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1. INTRODUCTION 

In the early 19503, there was a revolution, of sorts, in 

the field of X-ray crystallography. Since 1934, when À.L. 

Patterson derived what is now known as the Patterson function, 

crystal structures had been solved, almost exclusively, from 

analysis of this function. Such structure solutions were 

accomplished by obtaining the atomic positions of constituent 

atoms from a search for characteristic interatomic vectors in 

the Patterson function, usually using two-dimensional 

projections. The revolution began, however, in 1952 with a 

series of elegant derivations which revealed that crystal 

structures could, in theory, be solved from the direct 

manipulation of the phases of Bragg reflections. These 

approaches became known as direct methods. The immediate 

popularity of the direct methods approach stems from its 

relatively low computational requirements and its capacity to 

solve equal atom structures which were previously somewhat 

difficult to handle. Since that time the solutions of a large 

majority of all crystal structures have been attempted first 

using direct methods. There are, however, structures which 

resist solution by direct methods. 

Through the years some researchers (notably including 

this research group) have continued to explore the intricacies 

of Patterson analysis. This research has developed to the 

point where complete structure determinations can now be made 
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automatically on structures with a wide variety of symmetry 

types and compositions. The resurgence of the Patterson 

method as a viable alternative for the elucidation of complex 

structures can be seen as a "counter-revolutionary" effort of 

some consequence. Whereas some of the more prominent 

automatic Patterson-based techniques require prior knowledge 

about the atomic arrangements within the structure, we have 

developed an "ab initio" method where no such information Is 

necessary. This method has been automated in the form of a 

computer program called ALCAMPS. This dissertation will deal 

primarily with the theory and development of Patterson 

analysis, embodied in ALCAMPS, and its application to the 

solution of complex real crystal structures. 

The central objective in a crystal structure 

determination is to obtain a complete "picture" of the 

material under study. This picture should normally Include 

the positional and vibrational characteristics of all atoms 

present. This information is obtainable from the experimental 

data through the amplitudes and phases of the diffraction 

maxima. The amplitudes are directly obtainable from 

measurable quantities, but the phases must be inferred by 

other means. The problem of calculating these phases is what 

is known as the "phase problem". This will be discussed in 

some detail in Section 2. 

Also included in Section 2 will be discussions of the two 

major methods for solving the phase problem; direct methods 



www.manaraa.com

3 

and Patterson methods. Although none of this research has 

dealt directly with direct methods, a fairly detailed 

discussion of the basic theory and procedure will be 

presented. There are many reasons for this. One of the 

reasons is that direct methods are not always successful. It 

is important, therefore, to be aware of the drawbacks to 

direct methods, in order to avoid the same problems in real 

space. Secondly, a discussion of the phase problem is not 

complete without mention of reciprocal space relationships. 

Direct method? of phase determination are direct applications 

and extensions of these relationships. As implied by the 

Fourier transformations from real to reciprocal space and vice 

versa, there are analogous relationships in both spaces. A 

firm understanding of direct methods techniques, which have 

been extensively studied in the past couple of decades, can 

benefit us. Finally, when working with real space quantities 

it is important not to lose sight of the underlying physical 

phenomena which give rise to diffraction. 

The discussion of Patterson methods will culminate in an 

introduction to ALCAMPS, and how it represents the combination 

of many separate ideas into a single self-contained algorithm. 

Section 3 will deal with the solution of a hypothetical 

two-dimensional structure. The discussion will necessarily be 

somewhat simplistic, but should serve to illustrate the 

technique. 

A more detailed discussion of ALCAMPS will be presented 
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in Section 4. Many of the statistical tests and calculations 

which contribute to the accuracy of the results will be 

highlighted. 

ALCAMPS has been successfully applied to the solution oi 

sixteen structures to date. Detailed discussions of eight of 

these structure solutions will be included in Section 5. Eacn 

of the eight structures illustrates an important capability or 

ALCAMPS. Conclusions about ALCAMPS and about the resulting 

increased power of Patterson analysis will be made in Section 

6 .  

A number of additions and perturbations to the present 

procedure of ALCAMPS come to mind when the details are put 

down on paper and when the program is used. Many of these 

have not been incorporated in the program, due to time 

restrictions, but will be discussed In Section 7 in some 

detail with the hope that they may eventually be applied. 

Detailed discussions of some of the more prominent 

crystal structure determinations done in the course of this 

research have been relegated to Section 8, because the 

emphasis of this dissertation is more on the theory and 

application of a method than on the chemistry and physics of 

the materials themselves. 

A nearly complete list of structures solved - both as 

collaborations and alone - will be presented in Section 9. 

Those structures which have been published will be listed with 

the title, journal and co-authors included, while those 
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structures which are still to be published will be listed only 

with the co-authors. 

The computer program PIKR serves a very important purpose 

in our automatic solution of crystal structures using 

Patterson analysis. This program calculates the positions ana 

heights of all peaks in the Patterson or Patterson 

superposition maps which are used. A detailed discussion of 

this program will be presented in Section 10. 

The interactive computer procedure CHES.CAT, which was 

written during this period, will be outlined in Section 11. 

Finally, a discussion of the design and assembly of a low 

temperature apparatus for our four-circle diffractometers will 

be presented in Section 12. 
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2. THE PHASE PROBLEM 

2.1 Discussion of the Problem 

Determination of the absolute phase shifts undergone by-

X-rays when diffracted from the three dimensional lattice of a 

real crystalline material is the key objective of any crystal 

structure determination. This is commonly known as the "phase 

problem". As we will see, measurement of the intensities of 

diffracted X-rays can provide complete relative information 

both about the reciprocal space phase shifts and about real 

space interatomic spacings. The intensities cannot provide us 

with direct absolute information. Complete absolute 

information can be obtained, however, from complete relative 

information by calculating the correct (or in some cases, one 

of the correct) "absolute" values of one or more phase(3) or 

atomic position(s). This is, in fact, the basis for some of 

the more prominent automatic structure solving algorithms. 

2.1.1. A physical problem 

A single-crystal diffraction experiment involves the 

interaction of an incident X-ray beam with a crystal, 

resulting in diffraction (or reflection) of the beam. Since 

the incident X-ray beam is an electromagnetic plane wave, it 

can be expressed mathematically by T|)(r) = ^, where 
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^0 is the amplitude and kg represents the wave vector in the 

direction of propogation, with magnitude 2ir/x. The 

wavelength, x, of X-radiation is on the order of 1.0 A, 

approximately the interatomic spacing of atoms in crystalline 

solids. Therefore, crystalline solids act as diffraction 

gratings when an X-ray beam is passed through them. Each 

electron scatters X-rays in all directions producing a 

-> ik'r 
distribution of diffracted waves, ̂ y(k)=fje j, which have 

amplitudes and wave vectors with magnitudes approximately 

equal to those of the incident wave, but with different wave 

vector directions. The variable f^, the scattering amplitude 

for a single electron, falls off with an increase in the 

scattering angle. 

What are observed and measured, however, in an X-ray 

diffraction experiment, are the intensities of the composite 

diffracted waves which result from the superposition of the 

diffracted waves from all electrons. Sharp diffraction maxima 

will occur only in particular directions at particular angles 

as described by the familiar Bragg's Law equation^ 

Equation 2.1. X = 2dsin(©j^). 

X-ray plane waves, after scattering, can either reinforce 

or interfere with one another. Parallel incident waves (with 

wavelength x) which are in phase before diffraction and then 

diffracted by parallel planes in the crystal (with interplanar 

spacings of d) will only be in phase at specific angles of 
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diffraction (©£,)• 

Similar phase relationships arise when one considers the 

diffraction of X-rays from a distribution of electrons. 

Figure 2.1 shows a geometrical arrangement where two 

scattering centers and at positions r^ and 

relative to an arbitrary reference point 0, are in position to 

diffract the incident beam. (These scatterers could be single 

electrons or small distributions of electrons, e.g., atoms.) 

The path differences between the waves through and A^, and 

the wave through 0 will be 

= |r^|(sinp^ - sinot^) 

Equation 2.2. and 

°2 = Bd2-Bi2 = |r2|(sinP2 * sino^) 

The corresponding phase differences will be 

( 2Tr/X )D^ = (Îc-ICq ) ' r^ = 2iTÏÎ'r J, 

Equation 2.3. and 

( 2'ir/\)D2 = (Ïc-ÎCq ) *r2 = 2Trît'r2 

where h is referred to as the diffraction vector. Estimation 

of the absolute phase changes from the diffraction process 

would require calculating the path differences between the 

diffracted waves (including the wave through point 0) and the 

undiffracted wave. These are not normally directly 

obtainable. 

The amplitudes of the resultant, composite diffracted 
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\ 

Figure 2.1. Schematic diagram of the geometrical arrangement 

of two scatterers and Ag relative to an 

arbitrary reference point 0. 
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waves, known as the structure factors F(h) are represented 

by a superposition of the contributions from all electrons 

N N . 
Equation 2.4. F(h) = E® i|).(h) = Z® f^e^^ih 

j=l ] 3=1 J 

where is the number of electrons. The magnitude of F(ït) , 

|F(&)|, is related to the extent to which all electrons or 

atoms scatter in phase, or in other words, the relative phase 

differences of the diffracted waves, e.g., A$=2?&'(r2-r^) 

between scatterers A2 and in Figure 2.1. This quantity, 

|F(ït)|, is independent of the chosen reference point, 0, and 

the absolute phase for the reflection. 

2.1.2. A computational problem 

The goal of most structural analyses is to determine the 

electron density, p(r), at all positions r. This 

determination can be made by calculating p(r) as the Fourier 

transform of the structure factors 

00  ̂

Equation 2.5. p(r) = / FthJe'^^ih ^ dS. 
-00 

where |F(Ë)|^ a. I(ïî), and are thus directly derivable from 

a measurement of the diffracted intensities. The structure 

factors, however, are functions not only of the amplitudes of 

the scattered waves, but also of the phase shifts due to the 

scattering. They can, then, be expressed in the following 
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way; 

Equation 2.6 F(ïi) = |F(ït) | 

= A(Ë) + iB(îî) . 

Substituting this expression for F(Ë) into Equation 2.5 

and recognizing that, in practice, the integral is actually 

calculated as a finite, discrete summation over integer values 

of ïi=(h,k,l), p(r) can be expressed as 

Equation 2.7. p(r) = à 2 |F(3)|ei[*(h)-2nh rl 

ÏÎ 

Thus, knowing the magnitudes of all F(ïi) and the phases 

of all reflections, complete structural information can be 

readily obtained. Since the magnitudes of the structure 

factors are easily derived from measurable quantities, the 

only remaining unknowns in Equation 2.7 are the phases. This 

is the phase problem. 

For reasonably complex structures, there are basically 

two ways to tackle the phase problem. The first is to use 

what are called the direct methods; these involve manipulation 

of reciprocal space phases to obtain a consistent set subject 

to certain inherent symmetry relationships. The second 

approach is to work in real space using the Fourier transform 

of the intensities, i.e., Patterson methods; these involve 

manipulation of real space vectors to obtain a set of atomic 
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positions which reproduces the structure factor magnitudes. A 

brief discussion of the historical background pertaining to 

the development of these methods and their application will 

follow. 

2.2. Direct Methods 

2.1.1. Solving the phase problem 

The direct methods approach to phase determination 

evolved from a need for crystallographic techniques capable of 

determining structures where atoms of approximately equal 

atomic number are involved. Direct methods center around the 

phase relationship 

Equation 2.8. $(Ë) = {j)(ïc) + (j)(ïi-]c), 

2 
derived, in 1952, by D. Sayre , and independently by others 

(Cochran^, Zachariasen*). It was hypothesized that under the 

conditions that p is a nonnegative, nonoverlapping, equal atom 

density distribution, the electron density function will 

approximately resemble itself when squared, i.e., 

p(r)=KAp^(r), and hence that F(^J=K*G(&), where G(S) are the 

hypothetical structure factors for the squared structure. 

Therefore, from Fourier transform theory, the following 
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relationship should also hold; 

Equation 2.9. F(ïî) = K*G(Ë) = ^ Z F(îc)F(ïx-îc) , 

ÏC 

where 

Equation 2.10. F(îî) = Z f. e"®. 
3 = 1 ] 

Here, the summation is over all atoms, and the scattering 

factors, fj, represent the scattering contributions of the 

constituent atoms at positions r^, with vibrational 

parameters B^. The relationship in equation 2.9 will hold 

upon summing over the complete (infinite) set of reciprocal 

vectors, ïc. It was shown, however, that this relationship 

should still hold for summations over a limited range of it, 

if |F(ic) 1 and |F(ïî-lc) | are large. This, therefore, implies 

that given the phases of some strategically chosen reflec­

tions, the phases of all other reflections can be obtained. 

Furthermore, certain symmetry restrictions can require that 

the phases for some reflections be restricted to particular 

values. This can help initiate the process and once a self-

consistent set of phases has been obtained, a calculation of 

p(r) can be made, and the phase problem is solved. 

2.2.2. Development of methods 

In practice. Equation 2.9 is reduced to Equation 2.8, 

where the equal sign should be read as "probably equals". 
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$(h) can be predicted from a weighted average of many 

predictions based on the previously estimated phases of a set 

of reflections Jc and (ïi~)c). Clearly, the weights in this 

average, the probabilities of each prediction being correct, 

are important quantities. In the middle 1950s many 

researchers began working out probability formulae for any 

5 
given phase prediction. Cochran and Woolfson derived a 

probability distribution 

Equation 2.11. P[$(hl] = eCncos[$(h)-$(k)-$(h-k)]] ^ 

2irlQ(Ti) 

where ti = |E(fî)E(îc)E(ïî-ic) | and Iq is a Bessel function 

of the second kind, for , given <|)(ïc) and 

This expression is based on the magnitudes of the normalized 

structure factors; 

Equation 2.12. E(Ë) = {|F(Ë)|2/[E(Ë)(Zf=)]}l/2, 

which are the observed fractions of the intensities expected 

from a random distribution of atoms, and whose magnitudes are 

independent of the diffraction angle. e(î\) is a multiplicity 

factor whose value for a given reflection depends on the 

crystal symmetry. Reflections with large |E(Ë)| are 

reflections for which many (or most) of the atoms in the 

structure scatter in phase. The significance of these 

probability distributions is that they quantified what would 

otherwise be merely qualitative manipulations of phase sums. 
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Karle and Hauptmann^, in 1956, reported what has become 

known as the tangent formula, 

Z n sinC(|)(Jc)+0(ïî-lc)} 

-* ic Equation 2.13. tan*(h) = , 
Z T) cos{$(k)+$(h-k)} 

ic 

which can be used to refine phase angle predictions derived 

from Equation 2.8. 

This veritable explosion of theoretical development gave 

crystallographers the tools they needed to handle some of 

those difficult structures which were previously unsolvable. 

From this evolved a number of procedures for automatic phase 

determination. One of the earliest was that known as Symbolic 

7 
Addition (Karle and Karle ). Symbolic Addition involves 

assigning symbolic phases to strategically chosen reflections 

and calculating the phases for the remaining reflections in 

terms of the initial set of symbols. A "strategically" chosen 

reflection is one which has a large |E(ïi) | and which has 

good connectivity, i.e., can be combined with a few other 

starting reflections to generate predictions for the phases of 

many more reflections. Not all reflections have measurable 

intensities, let alone intensities with large |E(Ë|; this 

will depend on the atomic distribution. The best starting 

sets of reflections will, therefore, usually be different for 

different structures. 

Once a consistent set of symbolic phases has been 
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generated, the correct values for the symbols can be 

calculated. Referring back, now, to Figure 2.1, it was 

suggested that absolute phases could be obtained from relative 

phases by correctly guessing the absolute phase(s) of one or 

more "starting" reflection(s). This is known as fixing the 

origin, since it does fix the real space positions of electron 

density maxima (atoms), and is done by considering what are 

known as structure invariants and seminvariants. 

Structure invariants are defined as quantities whose 

values are independent of the origin choice (hence strucutre 

invariant). As described above, |F(Ë)| is such a quantity 

and $(Ë) is not. Fortunately, however, some structure 

factor products have origin-independent phase angles. A shift 

of the origin by a vector Z, results in a phase shift for 

the structure factor F(ïi) of -2irS*^, as implied by 

Equation 2.3. The product F(ïîj^)F(ïi2) * * will be 

structure invariant if is because 

the corresponding phase shift upon shifting the origin is 

-2ir^* )=0. One of the simplest products of this kind 

is F(-ii)F(jc)F(ïi-ïc) , which leads to the structure invariant in 

Equation 2.8. 

Structure seminvariants are defined as quantities whose 

values are fixed once the origin is chosen. For each space 

group there is a conventional set of equivalent origin 

positions in the unit cell which have a common positional 

relationship with the symmetry elements (positions left 
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invariant by symmetry operations) of the group. If the origin 

is located, for instance, on an inversion center in a 

centrosymmetric space group, (J)(2Ïi) is a structure 

seminvariant. In this case the vector connecting any two 

equivalent inversion centers, is restricted to having 

components of 0 and ±1/2. As a consequence, -2ÎÎ*A will 

always be an integer and there is no effective phase change 

(for F(2Ïx)) upon shifting the origin. Each of these 

seminvariants will fix the phases of particular reflections, 

depending on the type of symmetry involved. Space groups with 

high symmetry have many structure seminvariants and a 

correspondingly large number of phase restrictions. 

Once the origin has been fixed and the phases determined, 

the electron density function can be calculated from F(ïi) 

(magnitude and phase) using Equation 2.7. The maxima in 

p(r) will correspond to atomic positions and calculation of 

interatomic distances and angles will result in identification 

of the atoms. 

MULTAN, developed by Germain and Woolfson®, and probably 

the most extensively used program for determining phases, is 

based on the same principles as Symbolic Addition. The major 

difference is that the "strategic" reflections are given 

numerical values before Equation 2.8 is applied. In addition, 

as the program has developed it has become increasingly 

sophisticated in the application of probability distributions 

as well in the predictions of starting phases. In the earlier 
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stages of the development of MULTAN and other direct methods 

techniques, structures with wide ranges of scattering power 

(atoms of varying atomic number) were resistant to correct 

solution. Since then their capability with these types of 

structures has been significantly improved. Experience in our 

group with a wide variety of structural types indicates, 

however, that although direct methods are quite valuable, 

there are still many structures which just cannot be solved by 

these statistically oriented methods (see Section 5). This is 

one of the reasons we have been exploring and expanding the 

powers of Patterson methods. 

2.3. Real Space Methods 

2.3.1. Solving the phase problem 

Real space methods involve the development of a refinable 

model of the structure (a partial set of atomic positions) 

which is then used to calculate phases in order to resolve 

additional atoms. The structure factors, F(îi), the 

composite amplitudes of the scattered X-rays, can be 

calculated as summations over the scattering contributions of 

all atoms using Equations 2.10. The real and imaginary parts 
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of F(H) can be expressed as : 

Equation 2.14. A(&) = Z f. cos{2irli*r , 
i=i J ] 

and 

B(it) = E f. sin(2Trit*r . 
j = l ^ ] 

From simple geometrical arguments, $(&), the phases, can be 

calculated as; 

Equation 2.15. ^(ïî) = tan~^CB(h)/A(ïî)3. 

Thus, given a nearly complete set of refinable atomic 

positions, r^, the phases of all reflections, and in turn, 

p(r), can be calculated. 

The majority of all real space methods of solving the 

phase problem begin with the calculation of a Patterson map. 

This is the primary way of retrieving real space information 

from reciprocal space information without using the phases. 

The Patterson function is, in practice, calculated as the 

Fourier transform of the diffracted Intensities 

Equation 2.16. P(r) = ^ ^ |F(ii)|^ cos(2w&'r) . 
h 

Notice that this calculation is not dependent on the phases. 

Substituting Equation 2.10, we note that the coefficients. 
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|F(Ë)|2, can be expressed as 

Equation 2.17. |F(ii) = F(ît)F(-S) 

= Z Z (r^-r^)g-(Bj^+Bj)sin 0/^2 ^ 
i=l j=l ^ ] 

This has a form much like that for F(ïi), except that now the 

contributions are from pairs of atoms. Thus, the Patterson 

can be expressed as a distribution of all interatomic vectors, 

r. Furthermore, the magnitude of P(r) is proportional to 

Zj.Zj(ZiZj) such that (r^-r^) = r. This interpretation 

of the Patterson function as being composed of a complete set 

of interatomic vectors forms the basis for our analysis. 

Use of a vector set notation is useful for our analysis, 

in that the complete set of Patterson peaks can be expressed 

as the union of all images of the structure 

Equation 2.18. £P(r)} = Ca^-a^l U (a^-ag) U ... U 

= {a^-aj}, i,j = 1,N , 

where N is the number of atoms in the structure. Each image 

contains the complete structure shifted such that the viewing 

atom is positioned at the origin of the map. The Patterson, 

then, is a superimposition of N images, each shifted relative 

to the rest. Deconvolution of the Patterson into one or few 

images can lead directly to a solution of the phase problem. 

Deconvolution can be carried out by applying what is 
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known as a Patterson superposition. There are a number of 

ways to do a Patterson superposition. The normally preferred 

way is to perform a "minimum" convolution of the Patterson 

function, P(r), and the Patterson shifted by a vector r^ 

which belongs to the set {a.-a.}, P(r+r ); 
1  J  5  

Equation 2.19. PS(r) = min CP(r),P(r+r^)3. 

This convolution is calculated as the point-wise minimum of 

the two functions P(r) and PCr+r^), for all values of r in the 

unit cell. 

The following two examples, again using the same vector 

set notation, should serve to illustrate the result of such an 

operation. 

(1) If r^ is a single, i.e., unique interatomic vector, 

say r^ = (a^-a^), then the set of vectors remaining 

after a superposition using this shift vector can be expressed 

as the intersection of the set of Patterson peaks and the set 

of peaks shifted by (a^-a^): 

Equation 2.20. CPS(r)} = [{a^-a^J+ta^-a^)] S I  Ca^ , _ % j , ]  

= [{(a^+a^l-taj+a^)}] A Ca^'-aj'} 

= CCa^-aj^} U Cag-aj] U C (aj^+a2)-aj+a^L) lijtl, j?t23 

_ -¥ —• 
A jt3 

CPS(r)} = Ca^-a^} U {ag-aj}, i,j,i',j' = 1,N 
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In other words, two images will result, the first a forward 

image as "viewed" from a^ and the other an inverted image as 

"viewed" from ag. It is important to recognize that some 

other vectors will often remain. For instance, (referring to 

Equation 2.20) if: (a) j=3 and i=4, (b) ag=a^+a^ and 

ag=a2+a^ are the positions of two real atoms a^ and a^, 

and (c) a^ and a^ are real atoms, the vector (a'g-a^) will 

remain after the superposition. This vector is not part of 

either of the images, Ca^-a^^î or Cag-aj}. 

(2) If, on the other hand, the superposition vector is a 

multiple vector, say for example a double vector with r^ = 

(ag-a^) = (a^-a^), the set of vectors remaining after 

the superposition can be expressed as 

Equation 2.21. £PS(r)} = Ca^-a^}U{a^-aj}U{a^-ag}U{a^-aj]. 

Two of the images are forward images (from a^ and a^) and two 

are inverted (from a2 and a^). 

The objective of most Patterson superposition methods, 

then, is to do a superposition using a vector with a 

relatively low multiplicity and identify the images which 

remain. The atomic positions from any one of the images can 

be used to obtain phases and thus solve the phase problem. 

2.2.1. Development of methods 

A.L. Patterson derived what has become known as the 

Patterson function in 1934.^ In 1936, the role of symmetry in 
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Patterson analysis was made clear when D. Harker^^ first 

introduced the concept of Marker vectors. 

Marker vectors are those Patterson maxima which 

represent the interatomic vectors between symmetry-equivalent 

atoms. Table 5.1 shows the complete set of Marker vectors for 

the space group P2^/a. This table shows that direct 

inferences about the positions of prominent atoms in the 

structure (ones with large scattering power), can be made by 

identifying points along Marker planes, e.g., 

(l/2-2x,l/2,-2z), and Marker lines, e.g., (l/2,l/2-2y,0). The 

advantages to using these vectors are that they are a small 

subset of the total number of peaks in the map and that they 

lie on relatively special positions. 

Marker vector analysis evolved, then, as the combining of 

coordinate information from appropriate Marker planes and 

lines to form vectors of the type (-2x,-2y,-2z), each of which 

will potentially contain information about the position of one 

atom. If a particular vector (-2x^,-2y^,-2z^) is derived by 

combining coordinate information for the same atom, say atom 

1, then that vector will be a real interatomic vector and 

must be in the Patterson or superposition map. A limited but 

not insignificant number of atomic positions can be derived 

using this approach. 

The ever-present problem with the Marker vector analysis 

approach is that the two-fold related vector (for instance) 
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for one atom can be combined with the glide related vector for 

another atom to form a vector which is accidentally present in 

the map, but is not the inversion related vector for either 

the first or the second atom. As a solution to this problem, 

the technique of Vector Verification was devised and 

developed. This technique will be discussed in more detail in 

Section 5.1. It basically involves the confirmation of atomic 

coordinates obtained from Marker vector analysis through the 

identification of corresponding interatomic vectors in the 

Patterson map. 

In the direct methods technique Symbolic Addition, some 

of the phases are assigned symbols and all remaining phases 

are expressed as functions of those symbols. The approximate 

phases of all reflections are obtained by identifying the 

values for the symbols. Similarly, using Patterson methods, 

the electron density space positions of all of the atoms in 

the unit cell can be obtained from the position(s) of only one 

or a few of the atoms. The complication for the application 

of this idea in real space lies in the fact that complete 

interatomic information is available, not merely the 

interatomic information relative to a single atom. By 

restricting consideration to heavy atom images only, Beevers 

and Robertson^^ were able to derive relationships which could 

result in the elucidation of more complete absolute 

information, given only the position(s) of one or few heavy 

atoms. The technique they devised was known as Vector 
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Convergence. This approach was described, by them, as 

applicable only to structures with relatively high symmetry 

and with at least one heavy atom present, although it appears 

that it could be made generally applicable. In this method 

the position of a heavy atom is first identified 

using Marker vector analysis. The most prominent peaks in the 

Patterson map are those involving heavy atom - heavy atom 

(H-H) interactions and heavy atom - light atom (H-L) 

interactions. These can be viewed alternatively as the 

vectors from any one of the symmetry-equivalent heavy atoms to 

the remaining atoms in the structure. The positions of the 

lighter atoms are identified by placing the origins of 

appropriately transformed Patterson maps on the positions 

corresponding to the Marker vectors. The transformations used 

are those relating the origin to the Marker vector positions. 

Points of coincidence between the many copies (one for each 

symmetry operation) of the Patterson are assumed to represent 

real H-L interactions. The electron density space positions 

for the light atoms are then calculated from these points of 

coincidence by shifting the corresponding Patterson vectors by 

the vector (-x^y-y^y-z^). This technique was successfully 

applied to the solution of a number of structures. 

One of the most obvious as well as most important 

observations to be made about the Patterson function is that 

heavier atom interactions will show up more clearly than 

lighter ones. This is a crucial point, because it allows one 
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to get a foot in the door, so to speak. If there is one heavy 

image present, most of its constituent peaks will be 

relatively large peaks and similarly most of the large peaks 

will be part of the heavy atom image. A large portion of the 

structure can be identified in such a situation. In the early 

years of crystallography, when the available computing 

facilities were rather crude, emphasis was necessarily placed 

on the solving of the structures of relatively simple systems. 

In addition, researchers were forced to work with systems 

which contained one or few heavy atoms. The positions of the 

heavy atoms would be found from Marker vector analysis and 

some fraction of the remaining positions would be inferred 

from the Patterson. Calculation of an electron density map 

using the phases resulting from Equation 2.15 based upon the 

assumed positions would reveal further possible positions and 

the structure would be solved. In the worst situation, when 

only the heavy atom's position could be identified from the 

Patterson map, the phase problem was solved by finding the 

position of the heavy atoms and using the resulting phase 

information to locate further atoms. This became and has 

remained a very useful and often successful technique. The 

inherent assumption is that the phases calculated from the 

single atom (or a few atoms) at the position(s) estimated from 

the Patterson closely approximate the correct phases for the 

complete structure. If so, Fourier transformation using the 

calculated phases would reveal an electron density 
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distribution closely resembling the correct distribution. It 

is apparent that this approximation is not always sufficient. 

During the 1940s and 1950s, while many of the 

developments in direct methods were being made, researchers 

were beginning to look much more closely at the Patterson 

function. The image theory of Patterson maps was well-

understood and recognized, but it also became clear that there 

were additional ways of looking at the measured intensities in 

real space. One of the interesting developments along these 

lines was the derivation and interpretation of modified 

2 
Fourier transforms of |F(h)| . In 1952, A.L. Patterson 

presented a paper describing a Fourier synthesis which 

resulted in what he called a Symmetry map.^^ The Fourier 

integral is simply 

Equation 2.22. S(r) = Z |F(&)|2 e^^ih'a g-2TriB*r ^ 
ÎÎ 

where B is a simple rotation or rotatory-inversion matrix 

operator and a is a translation vector. The significance of 

this new function S(r) lies in the definition of B and a. 

If B and a are appropriately related to the matrix operator 

and translation vector for a symmetry operation in the space 

group, the maxima in the function S(r) will have magnitudes 

proportional to the probabilities of the positions r lying 

on that symmetry element. 

In the early 1950s, researchers were beginning to develop 
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the theory and application of Patterson superpositions. In 

X8 1 g 
1950, Clastre and Gay and Garrido discovered that 

superposition of a shifted Patterson map on an unshifted map 

resulted in the superposing of only a limited number of 

vectors in the two maps. The set of superposed vectors was 

known as the "reduced vector set". This superposition of 

Patterson functions results in the partial deconvolution of 

the Patterson. In his book, "Vector Space", M. Buerger 

discusses, among other things, how these deconvolutions could 

give rise to the extraction of a single image of the structure 

20 
from the Patterson. A discussion of the theory of Patterson 

superpositions, including the theoretical results derived, has 

already been presented, but further discussion of its 

application is warranted. 

When the superposition shift vector is the interatomic 

vector joining atoms with different scattering powers, the 

reduced vector set will contain vectors with incorrect peak 

21 
heights unless the shifted Patterson is properly weighted. 

For instance, if the shift vector is r^ = (ag-a^) and 

M=Z^/Z2 ) 1, then the weighted superposition operation would 

be represented by PS(r) = minCP(r),M*P(r+rg)3. Referring to 

Section 2.3.1 (in particular to Equation 2.20), the heights of 

the vectors in the reduced vector set are determined by the 

smaller of M*Z.Z. and Z.Z,, and M*Z.Z. and Z.Z-, respectively. 
X J  X X  1  J  J  ^  

For example, for the vector (a^-a^^) to be retained, the vector 



www.manaraa.com

29 

(a^-aj)=(a2-a2) in the shifted Patterson must be shifted by 

superimpose over the vector (a^-a^^) in the 

unshifted Patterson. In a weighted superposition, the 

resulting height would be the minimum of 

and 2^22f or Z^Zg. The resulting height for an unweighted 

superposition, however, would be the minimum of Z^Zg and Z^Zg, 

or Z^Zg, which is not the correct height. Weighted 

superpositions, therefore, are routinely performed whenever 

the atomic numbers of the interacting atoms can be estimated. 

In Section 2.3.1, it was mentioned that a single 

superposition can, in theory, deconvolute the Patterson 

function down to 2N images, where N is the multiplicity of the 

superposition vector. An extension of this argument reveals 

that the simultaneous superposition of two or more shifted 

Patterson maps can further reduce the number of images, 

ideally to one. This will be true only if the additional 

vector(s) emanate from the same atom. This further 

deconvolution can be demonstrated by re-expressing Equation 

2.19 as PS(r) = min [P(r),P(r+rg),P(r+rg,)], and using the now 

familiar vector set notation to determine the result. For 

example, if the vectors (&2"&l) (a^-a^) are used, the 

resulting set of vectors from the multiple superposition would 
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be as follows: 

Equation 2.23. {PS(rl}=[Ca^-aj}+(a^-a^)}A[{ai,-aj,}+(a2 

/  4  J  /  /  3 "  

= Ca^-a^}, i, j,i', j',i" , j" = 1,N 

Additional vectors would remain if [(a^+a2)-(aj+a^)], 

etc. happened accidentally to be real interatomic vectors. In 

situations where the distribution remaining after one 

superposition is too complex to handle readily and where 

another appropriate vector can be chosen, this multiple 

superposition approach can be very beneficial. 

An interesting example of the use of multiple 

superpositions is what is commonly called the backshift 

method. This is a technique which our research group has made 

22 extensive use of over the years. The presence of a 

Patterson peak with multiplicity greater than one implies the 

presence of one or more parallelograms represented, for 

instance, by (a^^,a2ra^,a3), where the vectors (a^-a^) and 

(a^-a^) are parallel. Assume that this vector 

(a^ra^)=(a^-a3)f with multiplicity 2, is used as the 

1st shift vector. Using the terminology from the previous 

section, the result of this operation should be the retention 

of four complete images, [a^-a^}, Ca^-a^}, (a^-aj} 

and Ca^-a^J, comprising the set of vectors, € I }. If one 

imagines, then, shifting this resultant map by the vector 
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-+ -» 

<^1-a2)=(as-a^), the new set of vectors would be 

represented by: 

£ II } = [{a^-agl+ta^-aglDUCta^-a^l+ta^-a^)] 

UCCag-ajl+ta^-aginUCCa^-a^l+ta^-ag)] 

Equation 2.24. E  C(a^-a2)UCa^-a2}3UC CO} Uta^ - A G } ]  

UC € 0 } UCa^-ajinUCta^-agiUCai-aj}] 

= [ ( a j^-a^ )U( 5^4-^2 )U{a^-a^ }U{a^-aj}] 

The minimum convolution of this shifted map with the unshifted 

resultant map (CI }) will result in C I } A C II } = 

C(a^-a2) r ) } =(a^-a2). The vector would 

be an excellent second shift vector for a multiple Patterson 

superposition, since it emanates from the same atom, a^^. The 

map resulting from this backshift superposition would, in 

theory, contain only one peak for every parallelogram 

^^l'^2'^4'^3^' but in practice, a number of possibilities will 

normally appear. One additional check for the acceptability 

o f  a  p r o s p e c t i v e  v e c t o r  ( a ^ - a ^ )  i s  t o  s e a r c h  t h r o u g h  s e t  C I }  

for the vector (a^-a^^) ={a4-a3)-(a^^-Jj). Clearly, if the 

vectors (a^-a^^) and (a^-a^) are present in the resultant 

vector set CI}, they both could be used as shift vectors, 

thus improving the chances of isolating a single image. 

Patterson superposition techniques gained in popularity 

through the 1960s and 1970s. When direct methods techniques 

failed completely, careful applications of Patterson 
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superpositions would often reveal the positions of some atoms, 

thus providing a starting point for the structure 

determination. These approaches still remain the last 

alternatives for most crystallographers, though, because the 

manipulations were rather cumbersome for moderately complex 

structures. 

In the middle 1950s, crystallographers began to 

investigate the feasibility of solving the crystal structures 

of macromolecular proteins, viruses and other biologically 

oriented materials. It was discovered that identical (but not 

symmetry-equivalent) molecular units can often be found 

throughout the structure. A method, known as Molecular 

Replacement, was developed whereby the electron density space 

locations and orientations of these units could be calculated 

by identifying the positions and orientations of 

23 characteristic Patterson space patterns. This gave rise to 

the development of rotation and translation functions which 

measured the overlap of the Patterson function with a copy of 

itself transformed about noncrystallographic symmetry 

elements, in order to identify the relationships among these 

molecular units.Macromolecular structures are solved then 

by identifying the positions of heavy atoms in specially 

prepared heavy atom derivatives and then finding the locations 

of other molecular units from the results of the rotation and 

translation function calculations. 

25 
Another method, which was developed by C. Nordman , is 
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applicable to crystal structures where at least partial 

information about the molecular geometry is known. This 

approach begins with the calculation of all of the interatomic 

vectors between the atoms in the known fragment. This pattern 

is then appropriately rotated and translated to match a 

portion of the Patterson map. This procedure can provide 

information about the relative locations of separate identical 

symmetry related units of the known fragment. This method has 

been reasonably successful in the elucidation of a variety of 

26 27 
structures, including organic ones. ' 

2.4. Introduction to ALCAMPS 

We have developed a new Patterson-based method, known as 

ALCAMPS (Ames Laboratory Computer-aided Analysis of 

Multi-solution Patterson Superpositions). Our method combines 

and automates some of the techniques discussed in Sections 

2.3.1 and 2.3.2, while adding considerable flexibility and 

generality. With our increased computing capabilities and 

more sophisticated approach we are able to go well beyond the 

previously mentioned methods in the accurate (and rapid) 

determination of complex unknown structures. 

ALCAMPS is predominantly a real space method, in that the 

positions of most or all of the atoms in the structure are 

determined directly from real space interatomic distributions 
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(Patterson or Patterson superposition maps). These 

distributions are independent of the phases of the structure 

factors, and therefore it would appear that this type of 

approach completely bypasses the phase problem (since no 

phases are calculated). This is true only if all of the atoms 

are identifiable in the result. When incomplete atomic 

information is derived, phases calculated from the partially 

complete atomic distribution must be used later to identify 

the remainder of the structure. 

ALCAMPS works with a "digitized" version of the Patterson 

or superposition map. Peak positions and heights are 

calculated by another program, PIKR (see Section 10), and used 

as input to ALCAMPS. The procedure begins with automated 

Marker vector analysis on the Patterson or superposition map 

under investigation. This analysis results in the 

identification of possible origin-fixing vectors 

(-2x,-2y,-2z). These vectors, if correct, define the spatial 

relationships between the true electron density function and 

corresponding displaced images of it. For each image (x,y,z) 

corresponds to the respective position of the viewing atom in 

the unit cell. Rarely do all of the vectors (x,y,z) thus 

derived correspond to real atomic positions, so some measure 

of the correctness of each choice is desired. This is 

acquired in ALCAMPS by calculating functions somewhat 

reminiscent of the Symmetry Maps of A.L. Patterson, but having 

a form more like the rotation functions mentioned in Section 
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3.2.2 (Molecular Replacement Method). These calculations 

provide ALCAMPS with a relative "probability of correctness" 

for each apparent Marker vector. 

Using those Marker vector analysis results which have the 

greatest probability, ALCAMPS proceeds to build up the 

corresponding images using a technique similar to Vector 

Convergence. Once the true positions of the viewing atoms are 

known, the locations of all symmetry elements are known 

relative to the origin of the Patterson or superposition map 

and relative to the positions of the Marker vectors. 

Additional atoms must have symmetry-equivalent partners 

displaced from Marker vector positions in directions and by 

amounts (determined by the symmetry of the space group) 

exactly symmetrical with their displacements from the origin. 

In the Vector Convergence method, the identification of 

additional atoms was accomplished using many copies of the 

Patterson map. With our modern computing capabilities and a 

complete list of the peaks in high speed memory, the 

"symmetry-matching" is readily automated. When sets of 

symmetry-equivalent peaks are found, their positions are 

appropriately transformed and averaged. 

As will be shown, complete (and accurate) images of the 

structure can be resolved, even from maps which are known to 

contain many images. ALCAMPS takes advantage of this fact by 

attempting to find relationships among the images it generates 

in order to form composite solutions which have increased 
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accuracy. The ALCAMPS procedure ends with a calculation of 

interatomic distances and angles using the composite atomic 

distribution which most nearly approximates the true electron 

density distribution. This aids in the identification of 

constituent atoms. 
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3. SOLUTION OF THE HYPOTHETICAL "ELEPHANTINE" STRUCTURE 

This section will include a complete, but brief 

exposition of the ALCAMPS procedure using a hypothetical 

two-dimensional pattern as an example. More detailed 

discussions of specific aspects of the analysis will follow in 

subsequent sections. 

Figure 3.1 shows the unit cell for a hypothetical 280 

atom planar ring structure (represented by the smooth curves) 

which "crystallizes" in the space group pmm. This 

two-dimensional representation of the material, affectionately 

known as "Elephantine", was "synthesized" using a pencil and 

graph paper by connecting neighboring "atoms" with straight 

lines ("bonds"), and "recrystallized" using a simple computer 

program and a plotter. This material is defined to be 

primarily organic, but does contain 5 heavier atoms (say iron) 

per molecule (represented by the "'"s in Figure 3.1). The 

unit cell drawing in Figure 3.1 would not be available except 

as the final result, but in this exposition it is instructive 

for characterizing the Patterson and superposition maps 

calculated during the analysis. 

Normally one would start with the Patterson map evaluated 

from the diffracted intensities. Figure 3.2 shows the 

Patterson map resulting from the Fourier transformation of the 

diffracted intensities from Elephantine. This Patterson map 

actually contains only 20 complete images - those as viewed by 
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Figure 3.1. Unit cell diagram for "Elephantine" (space group pmm) 

Mirror planes represented by dashed and solid lines. 
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Figure 3.2. Patterson map for "Elephantine". Contains 20 complete 

iron images. 
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the iron atoms. Because iron atoms scatter much more strongly 

than carbon atoms, these images would be the most prominent 

ones in the Patterson map. Careful examination of this map 

would reveal 80 elephants. The complete structure is 

represented in this map, many times over, but it would be 

difficult to imagine retrieving it directly. Clearly, some 

method of simplication is needed. This is why and when a 

Patterson superposition is of great value. Going back to the 

electron density map in Figure 3.1, it is apparent that the 

vectors (a^-a^^) and (a^-a^) are equivalent vectors. (This is 

an accidental equivalence due to the crystal packing of the 

unit cell.) This common vector corresponds to a double vector 

in the Patterson map. When this vector is used as the shift 

vector in a Patterson superposition, four complete images of 

the structure remain (see Section 2.3.1). These images are 

those as viewed from a^, a^, a^' and 3^2' , respectively (see 

Figure 3.3). Inverted images as viewed from a^2 and. a^ are 

equivalent to forward images as seen from a^' and a^', since 

the cell is centrosymmetric. Also indicated in the figure are 

lines representing the mirror planes appropriate to each of 

the images: dashed lines for the a^ image, dot-dashed lines 

for the a^ image, solid lines for the a.2' image and dotted 

lines for the a^' image. 

Each of these complete images is a simple translation of 

the actual structure (again because the space group is 

centrosymmetric). In fact, for this simplified example, the 
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Figure 3.3. Superposition map for "Elephantine". Contains 4 complete 

iron images. 
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translations correspond to the vectors from the origin of the 

superposition map to the intersections of dashed lines, 

dot-dashed lines, solid lines or dotted lines, depending on 

the image. This is because the true origin in electron 

density space lies on the intersection of perpendicular 

mirrors. Once again, the map in Figure 3.3 is idealized with 

the implication that the mirror positions are readily obtained 

unambiguously. In practice, the situation is not nearly so 

clear, and a careful correlation of the peaks in the map is 

required. 

The objective in this example is: (1) to identify each of 

the four iron images in the superposition map by finding all 

of those vectors consistent with the assigned symmetry element 

positions for each, (2) to identify the spatial relationships 

between the images, and (3) to transform and average the 

images to obtain a result corresponding to Figure 3.1. 

The unique Marker vectors for the space group pmm are 

(-2x,0) and (0,-2y). Therefore, the analysis is carried out 

by first searching the superposition map for relatively large 

peaks (corresponding to Fe-Fe interactions) along the Marker 

lines (-2x,0) and (0,-2y). These.lines correspond to the 

horizontal and vertical edges of the superposition map, 

respectively. There are 7 such peaks (represented again by 

"'"s) along the Marker line (-2x,0) and 5 along the line 

(0,-2y) (Figure 3.3). Images are identified (labelled) by 

their corresponding vector (u,v)=(-2x,-2y), which is the 
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vector from the viewing atom to Its Inversion partner. 

Possible values for (u,v) are generated by combining the lists 

of Marker vectors (-2x,0) and (0,-2y). Any (u,v) pair thus 

generated which is represented in the map (again as an ) 

can be considered a possible solution. These are considered 

as solutions because they are the results of the Marker vector 

analysis and because, as will be shown, they lead directly to 

independent solutions of the phase problem. Notice that there 

are 16 possible (u,v) pairs, while only four of them are 

correct. 

Most of the twelve incorrect solutions can be eliminated 

by requiring that the superposition vector have symmetry 

partners related by mirror operations consistent with the 

calculated origin position for each correct solution. Figure 

3.4 shows the Marker vectors (-2XQ^,0) and (0,-2yj^) and the 

inversion vector = (-2X]^,-2y-j^) , for the a^ image. The 

electron density position for atom a^^ is calculated as (x^,yj^) 

= ( (l-u-j^)/2, ( 1-V]^)/2) (see Figure 3.5). The head of the 

superposition vector at (Px,Py) in Patterson superposition 

(PS) space (Figure 3.4) corresponds to the position (x^+Px, 

y^^+Py) In electron density (E.D. ) space (Figure 3.5). This 

vector, then, would transform in E.D. space as shown in Figure 

3.6, according to the transformation; 

Equation 3.1. (x^+P^ry^+Py) -» [S2.(Xi+Px)+Tx,Sy(yi+Py)+Ty]. 
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(Pxpy) 

( 
(0-2y.) 

L 

Figure 3.4. This superposition space diagram shows the 

relative positions of the Marker vectors, the 

inversion vector, and the superposition shift 

vector for the a^ image. 
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Figure 3.5. The position is derived from the 

inversion vector in this electron density 

space diagram. The corresponding E.D. space 

position for the superposition shift vector is 

also given. 
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(PxpPy) (-Pxfy 

Figure 3.6. This electron density space diagram is an example 

of the superposition shift vector transforming 

with the mirror operation (-X,Y) in the a^ image. 



www.manaraa.com

47 

The corresponding transformations in PS space: 

Equation 3.2. (P^fPy) (Sy-Dyj^+SyPy+Tyl 

' '"i+SxPx'Vi+SyPy) 

=  ( P X ' . P Y ' L  

are shown in Figure 3.7. The vector (Px,Py) is assumed to be 

a real interatomic vector in each of the correct images. It 

must, therefore, transform appropriately within each image. 

This is the aforementioned criterion for elimination of 

incorrect solutions. 

The remaining atoms in the structure are located by 

searching the superposition map - in the same manner as with 

the superposition shift vector - for sets of peaks related by 

the symmetry operations of the space group relative to the 

calculated origin position for each image. For instance, if 

*12'^12 corresponds to the interatomic vector from 

to a2=(X2,y2)r the transformations in (PS) space would be: 

Equation 3.3. *12 '^12 " ̂ l"^^x*12'^l'''^yyi2* 

Figure 3.8 illustrates this process. 

Each of the possible images is handled separately. Peaks 

which are not part of the image being considered are 

eliminated by recognizing that appropriate symmetry partners 

are not present in the map. Notice that the point labelled 

(Xj^,yb) in Figure 3.8 does not have partners related to it 

across the mirror planes (dashed lines) or through the 
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PAPy 

(Pxfy) 

Figure 3.7. This superposition space diagram shows how the 

superposition shift vector would transform in 

superposition space, within the a^^ image. Dashed 

lines represent mirror planes. 
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Y 

Figure 3.8. This superposition space diagram shows how atoms 

within the a^ image are idenitified. 

corresponds to an interatomic vector which is not 

part of the a^ image. 
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inversion center (point of intersection of the perpendicular 

planes). 

Since more than one image can, in theory, be resolved, it 

is to our advantage to combine the results from all of them 

into a single image. When all of the complete images have 

been generated, the next step, therefore, is to identify the 

transformations between the images. As mentioned before, the 

space group for Elephantine is pmm. The origin of the unit 

cell is defined as being at the intersection of two mirrors, 

i.e., the origin lies on an mm site. Clearly, there are four 

unique points in the unit cell (Figure 3.1), which lie on the 

intersection of two mirrors. This constitutes an ambiguity 

which arises because selection of any mm site as origin yields 

the same set of intensities, i.e., they are indistinguishable 

from the point of view of a Patterson or superposition map. 

Therefore, each of the four complete images of Elephantine can 

have as its origin any one of the equivalent mm sites. Figure 

3.9 shows two of the possibilities, p^(a^) - the a^ image 

and P2(a2) - the a2 image. It is easily recognized that 

these two images are related by a translation of 1/2 in the 

x-direction. In real structures, the transformations won't 

normally be so easily recognized. A more sophisticated 

algorithm is required to identify the transformations in these 

structures. 

The images are combined by transforming the positions of 

the atoms in, in this case, images a2, a^ and a^, according to 
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Figure 3.9. The solutions (-ZX^f-ZY^) and (-ZXgf-ZYg) are 

related by a translation of 1/2 along X. 
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their respectively determined transformation vectors, and then 

by averaging the resulting positions with corresponding atomic 

positions in image a^. Once the four images have been 

comJ^ined "interatomic" distance and angle calculations will 

provide conclusive identification of all of the "atoms". 
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4. DETAILS OF THE ALCAMPS PROCEDURE 

Briefly, the program ALCAMPS can be broken down into the 

following steps; 

(1) INPUT - Input of known chemical and crystallographic 

information. 

(2) MARKER VECTOR ANALYSIS - Including specific applications 

for each Laue group and accumulation of possible 

origin-fixing vectors (u,v,w) = (-2x,-2y,-2z). 

(3) ELIMINATION OF INCORRECT SOLUTIONS - Quantitative 

calculation of overlap between the original 

superposition map and copies of the map 

transformed about symmetry elements defined by 

the Marker vectors. Application of the full space 

group symmetry and shift vector to eliminate 

incorrect solutions. Calculation of overall 

overlap integrals to help determine the 

"correctness" of solutions. 

(4) ACCUMULATION OF ATOM LISTS - Generation of a complete list 

of atoms in each of the images, accumulation of 

standard deviation, number of matches and averaged 

peak height for each atom. 

(5) CALCULATION OF STRUCTURE FACTORS - Calculation of E(obs), 

E(calc), R-factor, and scale factor for each 
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image. 

(6) AVERAGING OF IMAGES - Using overlap integrals and 

averagability factors. 

(7) DISTANCE - ANGLE CALCULATION - Calculation of interatomic 

distances and angles. 

Each step will be discussed in some detail in a separate 

section, emphasizing the features which enhance the 

reliability of the results derived. 

4.1. Input 

This program was written with a great emphasis on 

generality and flexibility. An important consideration for a 

method such as this is the amount of prior chemical or 

crystallographic knowledge that is required. Some of the 

modern alternative Patterson-based techniques require that the 

user specify, aX the outset, certain assumed geometrical 

features, and solve the structure by fitting the assumed 

fragment geometry and space group symmetry to the Patterson 

map. These techniques are thus not applicable when nothing is 

initially known about the structure. ALCAMPS was written to 

work without such information. The drawback to this is that 

some incorrect solutions can be initially accepted, since 

there are fewer discriminatory criteria in the early stages of 
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the analysis. ALCAMPS compensates for this, however, in later 

stages with the checks on the consistency of the superposition 

vector (when applicable) and the relatively strict 

requirements on the consistencies of atoms which are to be 

accepted in the images. 

The following is a description of the chemical and 

crystallographic data that are required by ALCAMPS and the 

reasons for requiring them. 

(1) Unit cell parameters - Used for distance, angle and 

standard deviation calculations. 

(2) Lattice translational symmetry - 0=primitive, 1=A-, 2=B-, 

3=C-, 4=1-, and 5=F-centered unit cell. This information 

is not actually required, but if known will simplify the 

analysis. If not known, the correct symmetry will be 

indicated by the results of the analysis. 

(3) Centrosymmetry - O=centrosymmetric, l=noncentrosymmetric. 

Once again, if this is not known, the program can be run 

with the lower symmetry and the correct symmetry will be 

revealed by the program. 

(4) Laue symmetry - l=trlclinic, 2=monoclinic, 

3=orthorhombic, 4=tetragonal, 5=trigonal, 6=hexagonal, 

7=cubic. If the Laue symmetry is not known conclusively, 

the structure can be solved in a subgroup with lower Laue 

symmetry. 

(5) Symmetry operations - In three dimensions, space group 

symmetry operations are represented by a rotation or 
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rotatory-inversion s, followed by a translation, 

The general position x,y,z, then, transforms as: 

fx'"! rSxx Sxy Sxz"l [x] fTxl 
Equation 4.1. |y'| = jSyx Syy Syz| |y| + |Ty| 

Lz'J LSzx Szy SzzJ LzJ LTzJ 

X' = SX + t 

where Sxx,...,Szz = 0 or ±1 and Tx,Tx,Tx = 0, ±1/4, ±1/3 

or ±1/2 depending on the particular space group operation 

being represented. This representation is appropriate 

for all types of symmetry. Only those operations which 

are known to be present need to be included, as long as 

the set of operations form a legitimate space group. 

(6) Orientation and size of map - Our Patterson maps are 

usually calculated with an approximate resolution of 

0.25A per grid point. The orientation is determined by 

the relative lengths ot the unit cell axes, such that the 

desired resolution is achieved. 

(7) Chemical composition - The program requires an estimate 

of the stoichiometry of the structure, including the 

atomic numbers and numbers of atoms per unit cell for 

each constituent element. This estimation is not crucial 

to the analysis, but a good estimate will normally help. 

(8) Superposition shift vector(s) - Used to eliminate some of 

the incorrect solutions predicted by Marker vector 

analysis. 

(9) Solutions supplied by user - If particular solutions. 
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(u,v,w) = (-2x,-2y,-2z), are to be supplied by the user, 

they will be interpreted the same way as ones found using 

Marker vectors. 

(10) Distance-angle ranges - Will depend on what interactions 

are of interest. 

(11) Parameters which deal specifically with the analysis and 

have default values which can be overridden; 

(a) Number of matches required for atoms to be kept 

(b) Number of solutions to be kept for averaging, etc. 

(c) Number of Marker vectors of each type to be used 

(d) Number of reflections used in Q-function and 

agreement factor calculations. 

(e) Lower limit in peak height for superposition map 

peaks. This will normally be determined by deciding 

what types of interactions are to be searched for. 

(f) % weight of average peak heights in FOM^. 

(g) % weight of number of matches in FOM^. 

(h) % weight of standard deviations in FOM^. 

(i) Tolerance for peak matching - in units of grid 

points. 

4.2. Marker Vector Analysis 

This section involves the automated application of Marker 

vector analysis. This analysis ideally results in the 
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identification of some or all of the images of the structure 

present in the Patterson or superposition map. An image is 

defined as a reproduction of the electron density function 

displaced such that one atom, the viewing atom, is at the 

origin. Each image is identified by the electron density 

space position of the viewing atom. Once the true position of 

the viewing atom is known, the remainder of the image can be 

generated. For this reason, the position (x,y,z) of the 

viewing atom, in the form of (u,v,w)=(-2x,-2y,-2z) is called a 

solution to the phase problem. Marker vector analysis takes 

advantage of the symmetry of the crystal to obtain possible 

solutions (u,v,w). Usually Marker vector analysis, as applied 

by ALCAMPS, will result in the identification of most or all 

of the correct solutions (vectors (u,v,w) which correspond to 

real atomic positions), along with a number of "incorrect" 

solutions. The task set for ALCAMPS, then, is to determine 

which solutions are correct and which are not. Discussions of 

how ALCAMPS goes about accomplishing this task will follow in 

subsequent sections. 

The general form of the Marker vectors is as follows; 

Equation 4.2. u' = (u',v',w') = (s-l)x + 2 

where only those Marker vectors with diagonal rotation or 

rotatory-inversion matrices, s, with elements (Sx,Sy,Sz), are 

used for the analysis. This includes all possible Marker 

vectors for space groups in the triclinic, monoclinic and 
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orthorhombic systems and a sufficient subset of all Marker 

vectors for space groups of higher symmetry. Each Marker 

vector will have its own translation vector t = (Tx,Ty,Tz). 

These vectors t will not, in general, be the same for all 

symmetry operations and it is important to use modified Marker 

vectors 

Equation 4.3. (u,v,w) = (s_-l)x = u'-? 

when combining the information from many sources. Typically 

(Sx,Sy,Sz) will have values +1 or -1 with corresponding values 

for (u,v,w) of (0 or -2x) , (0 or -2y) and (0 or -2z), 

respectively. 

ALCAMPS compiles a list of possible solutions (u,v,w) = 

(-2x,-2y,-2z), using information derived from appropriate 

Marker vectors depending on the symmetry. Each symmetry type 

is considered separately, since the analysis differs somewhat 

from one type to another and is simplified by making use of 

specific knowledge about each one. 

All of the symmetry operations in the presumed space 

group are assigned symmetry codes as indicated in Table 4.1. 

Along with knowledge of the Laue symmetry, this set of codes 

is used to determine what information (if any) about x,y and z 

can be obtained from the Marker vectors. A brief discussion 

for each Laue type will follow. A search is made along the 

appropriate Marker lines and/or planes for vectors with 

reasonable intensity, and lists of the positions and heights 
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Table 4.1. Symmetry Codes for Marker Vector Analysis 

Svmm. O P .  Code Marker Vector Line or Plane Info. Obtained 

X, Y, Z 0 

X, Y,-Z 1 0,0,W Line -2Z 

X,-Y, Z 2 0,V,0 Line -2Y 

X,-Y,-Z 3 o,v,w Plane -2Y,-2Z 

-X, Y, Z 4 U,0,0 Line -2X 

-X, Y,-Z 5 u,o,w Plane -2X,-2Z 

-X,-Y, Z 6 U,V,0 Plane -2X,-2Y 

-X,-Y,-Z 7 

of these vectors are compiled. These lists are combined, 

then, in a fashion which is dependent on the Laue symmetry, to 

produce the origin-fixing vectors (u,v,w) = (-2x,-2y,-2z). 

PI - For the space group PI there are no nonidentity 

operations and thus no Marker vectors. Therefore, the 

electron density origin is arbitrary and Patterson superposi­

tion space is indistinguishable from electron density space. 

Pi - The only nonidentity operation is the inversion 

operation and any peak in the superposition map can be 

considered as the origin-fixing vector (-2x,-2y,-2z). 

P2 - This Laue group signifies that the cell is 

monoclinic and noncentrosymmetric and that there are symmetry 

operations present with symmetry code numbers of 0 and 5, but 

none with codes of 2 or 7. The possible vectors (u,v,w) are 

determined by taking the values of -2x and -2z from the list 
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of peaks from the appropriate Marker plane (u',Ty,w'), and 

combining them with -2y = Ty, where Ty is the y-coordinate of 

the translational part of the symmetry operation. The choice 

of -2y is, crystallographically speaking, arbitrary, although 

the convention of putting the origin "atom" at the position y 

= -Ty/2 is adopted by ALCAMPS. 

Pm - This Laue group signifies that the cell is 

monoclinic and noncentrosymmetric and that there are symmetry 

operations with codes of 0 and 2, but none with codes of 5 or 

7. The possible values for (u,v,w) are obtained by combining 

the values for -2y from the Marker line (Tx,v',Tx) with values 

Tx=-2x and Tz=-2z, in a similar manner as for P2 type space 

groups. 

P2/m - This Laue group signifies that the cell is 

monoclinic and centrosymmetric. The possible choices for the 

electron density space origin are found by combining the lists 

from the Marker plane (u',Ty,w') and the Marker line 

(Tx,v',Tz), and testing for the presence of the inversion 

vector (u,v,w). 

P222 - This Laue group signifies that the cell is 

orthorhombic, noncentrosymmetric and having operations with 

codes of 0,3,5 and 6. A list of possible u,v,w triples is 

obtained by combining the lists from the appropriate Marker 

planes, (Tx,v',w'), (u',Ty,w') and (u',v',Tz), such that the 

values of -2x,-2y and -2z from the corresponding planes are 

equal (within the accepted tolerance level). 
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Pmmm - This Laue group signifies that the cell is 

orthorhomhic and noncentrosymmetric with operations of types 

0,1,2 and 4. Lists of possible values of -2Xr-2y and -2z are 

obtained from searches along the Marker lines (u',Ty,Tz), 

(Tx,v',Tz) and (Tx,Ty,w') by combining the lists of possible 

values of -2x,-2y and -2z. 

Pmm2 - This Laue group signifies that the cell is 

orthorhombic, noncentrosymmetric and polar in one direction. 

In the standard setting (polar in the c-direction) these 

space groups would have symmetry operations of types 0,2,4 and 

6. Lists of possible values of -2x and -2y are obtained (for 

this setting) from a search along the Marker plane (u',v',Tz). 

The z-component of the vector (u,v,w), -2z, is assigned a 

value of Tz. 

P 2/m 2/m 2/m - This Laue group signifies that the cell 

is orthorhombic, centrosymmetric and having symmetry 

operations of all types described in Table 4.1. Possible 

solutions are derived by combining the results from the Marker 

vectors with types 3,5 and 6. 

Space groups with tetragonal and higher symmetry - These 

space groups are treated the same as their lower symmetry 

subgroups at this stage of the analysis. 
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4.3, Elimination of Incorrect Solutions 

From the list of possible solutions (-2x,-2y,-2z), 

obtained in Section 4.2, there will normally be several 

correct ones, i.e., vectors (-2x,-2y,-2z) which contain the 

coordinates of real atoms in the structure. The peak heights 

for the corresponding Marker vectors are usually good measures 

of the correctness in the cases where some heavy atoms are 

present. If heavy atoms images are present in the Patterson 

or superposition map or, in the case of a superposition map, 

if the shift vector involves the interaction of one or more of 

these heavy atoms, solutions with relatively intense Marker 

vectors are most likely to be correct ones. Some additional 

measure of correctness is needed when either many or no heavy 

atoms are present. Such a measure is available for 

superposition maps. If a Patterson map is used, ÀLCAMPS would 

rely on criteria developed in later stages to determine the 

acceptability of the possible solutions (Section 4.5). 

The superposition function is an atomic distribution con­

taining many duplicates of the complete structure. Subsets of 

this distribution corresponding to the individual images 

possess the full symmetry of the space group. The symmetry 

elements in these images are displaced from their conventional 

positions by the vectors = -(u^,v^,w^)/2, i.e., the 

true positions of the atoms whose images are represented in 

the map. If the superposition map is rotated, reflected or 
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Inverted about one of the displaced symmetry elements of one 

of the images present, the origin peak would be transformed to 

the point on a Marker plane. Marker line or inversion related 

point, respectively, which is consistent with the appropriate 

image. In this case, the integrated overlap between the 

original superposition function and the transformed function 

should be a maximum, since one image will be exactly 

transformed onto itself. The probability of a given solution 

being correct is estimated by accumulating the overlap 

integrals for the operations of the space group using the 

corresponding Marker vectors. 

These overlap integrals are calculated using normalized 

structure factors calculated from the superposition peaks as 

follows ; 

Equation 4.4. E(ti) = 2 p.e^^lh'rj / (Z 
j 3 j ] 

where p^ are the heights and r^ are the positions of the 

superposition peaks. The integral, Q(sy2) is calculated as 

Equation 4.5. Q(s,?) = Z E(-txs)E(ïî)e"^^^'^ 

it 

See Section 4.6 for a derivation of this expression. For each 

type of symmetry operation, there will be a corresponding 

rotation or rotatory-inversion matrix, s, and set of Marker 

vectors The function Q(s,^) is calculated for each 

(s,^) pair and tabulated. The overall probability is 

combined with other statistical information to determine the 
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order - from most to least probable (or acceptable) - of the 

possible solutions. 

As discussed in Section 2.3.2, simple Marker vector 

analysis will not eliminate all incorrect solutions. 

Pseudo-symmetry and coincidental arrangements of atoms will 

often give rise to interatomic vectors which look like Marker 

vectors and may in some cases be internally consistent with 

the space group symmetry. ALCAMPS makes an additional check 

which will in many cases eliminate most of the incorrect 

solutions. 

The superposition vector ?=(Px,Py,Pz) is, by 

definition, chosen as a real interatomic vector within one or 

more of the images present in the Patterson map. In fact, it 

should be present in all complete images which remain after a 

superposition. This being the case, the atom corresponding to 

the head of the vector - if the vector is identified as 

(a^-a^), atom aj is at the head of the vector - should 

have a complete set of symmetry partners in each of the 

correct images. Equation 4.1 illustrates how the atom would 

transform in electron density space. In this case, (x,y,z)= 

(x^+Px,y^+Py,z^+Pz) is the position of the atom at the head of 

the superposition shift vector, in image i. In Patterson 

superposition space, the respective transformations would be 

defined by 

Equation 4.6. = (Px',Py' ,Pz' ) = -t 2 - x^ 
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where Patterson superposition space is assumed to be a simple 

translation (or inversion followed by translation in some 

noncentrosymmetric situations) of electron density space. 

ALCAMPS searches the superposition map for peaks at positions 

defined, for each symmetry operation within each suspected 

image, by Equation 4.6. If fewer than the required number of 

symmetry partners are found, the image is eliminated from 

consideration. 

4.4. Accumulation of Atom Lists 

Once a list of "probable" solutions has been compiled 

using the above procedure (Sections 4.2 and 4,3), a complete 

set of atomic positions will be generated for each one. Each 

solution is defined by the vector u^ = (u^fV^/w^) = 

(-2x^,-2y^,-2z^), and the point (in the superposition map) 

which is halfway along that vector, -x^ = (-x^,-y^,-z^), 

corresponds to the true electron density origin for that 

image. The vector x^, then represents the position of the 

"origin" atom in electron density space. From this 

information the positions of the symmetry elements of the 

space group can be identified. As mentioned earlier, the 

superposition map contains the full symmetry of the space 

group, so symmetry related "atoms" can be identified as 

superposition peaks whose positions are related through the 
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displaced symmetry elements. 

A particular superposition peak can be considered to be 

part of an image if it has the requisite number of symmetry 

partners elsewhere in the map. Superposition peak data are 

stored as positions and heights (intensities) in order of 

height. Real atoms are identified by working down through the 

list taking each peak as a target peak, and looking for 

symmetry related peaks. If, for instance, the target peak is 

at the Patterson superposition space position ~ 

(Ui2,Vi2fWi2)r its corresponding electron density space 

position would be = (Xi2'yi2'^12) ~ ^^12*^^1^ * 

Symmetry related positions in Patterson superposition space, 

using the previously discussed convention, would be defined as 

follows : 

Equation 4.7. u^^' = ^^12 + t -

ALCAMPS searches through the list of peaks for matches at 

positions u^g'. If the required number of matches is found, 

all of these positions are transformed as follows: 

Equation 4.8. x^g' = s~^(Uj^2' +• " t) 

and averaged with the target position x^2" is important 

to do such averaging because matches are rarely exact and the 

average position is therefore usually much more accurate than 

any one of the constituent positions. The average peak 

heights, number of matches and the standard deviations for 
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peak position averaging are calculated and tabulated for later 

use as additional discriminatory criteria. 

Peaks in Patterson superposition space which have been 

assigned as symmetry partners are appropriately flagged and 

ignored in subsequent searches. Some superposition peaks will 

be contained in more that one image; therefore, the sets of 

atomic positions are generated one image at a time and all 

flags, etc. are removed after each image is processed. 

The list of "atoms" for each image is sorted using 

"figures of merit" (FOM^). These figures of merit, based on 

the average peak height, number of matches and standard 

deviation for each "atom", are a measure of how likely the 

"atom" (apparent atom) positions are to be real atomic 

positions. The function, FOM^, is calculated as: 

PH. NM SA . 
Equation 4.9. FOM^ = a^-pfj + SA. ' 

mâiX IRclX X 

where PH^ is the peak height of the i^^ atom, is the 

largest peak height in the list, NM^ is the number of matches 

for the i^^ atom, is the largest number of matches for 

any atom, SA^ is the standard deviation for averaging of the 

positions for the i atom and SA„.„ is the minimum standard mm 

deviation for any atom in the list. The weighting factors a^, 

and a^ have default values of 1/3, 1/3 and 1/3, but can by 

changed by the user. 
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4.5. Calculation ot Structure Factors 

For each image, i.e., set ot" atomic positions, additional 

calculations are made which can give further evidence about 

the acceptability of that image. The residual agreement 

factor, R, defined, in this case, as 

ZC1E°(ÎÎ) l-klE^fh^) |] 

Equation 4.10. R = —— 
Z|E°(h)I 

a 

where E°(ïî) and E^(ïî) are the observed and calculated 

normalized structure factors, respectively, and k the scale 

factor between them, is the standard discriminatory function 

which represents the degree to which a calculated structural 

model matches or agrees with the observed data. This, as it 

has turned out, after many applications of ALCAMPS to real 

problems, is one of the most valuable criteria used in the 

analysis. Pseudo-symmetry can render the earlier Q-function 

calculations uninformative and an amazing number of 

coincidental peak matches always arise which can confuse the 

issue (thus the number of "atoms" in the image is not always 

an accurate criterion). The ultimate test, though, is always 

the quality of the calculated structure factor magnitudes and 

phases. The solution with the lowest agreement factor is 

often the one most likely to be correct. 

Normalized structure factors are used - both observed and 
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calculated - and thus, in theory, the scale factor should be 

equal to 1. This is rarely true in practice. The set of 

atomic positions generated by ALCAMPS is almost never exactly 

correct and certainly the relative peak heights do not always 

have the correct proportionalities. The magnitudes of the 

calculated structure factors, therefore, are usually in error 

to some extent. Of necessity, then, a scale factor is 

calculated for each image, to obtain the best agreement, 

without altering the atomic distributions generated. 

The scale factors are calculated using the following 

linear least squares algorithm. If the observed and 

calculated structure factors are assumed to differ only in the 

scale factor, then the following relationship should hold 

Equation 4.11. E°{ii) = k^E^Ch) + E^(ïx)Ak, 

where the initial value of the scale factor is kg and ûk is 

the change in the scale factor which minimizes the difference 

between E°(ïi) and E^(ït). Assuming kQ=l and Ak = k-kg = 

k-1, the scale factor can be expressed as 

ZCE° ( ti ) - k^E^ ( ÏÎ ) 3E^ ( IÎ ) 

Equation 4.12. k - 1 + — ———= 
SCECfS)]: 
h 

where the sum runs over the user-defined number Np of 

reflections with largest |E°(ÏÎ) | . 

Using the calculated scale factors, agreement factors are 
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computed and tabulated. Each solution, then, will be defined 

by: (1) a vector u = -2x\, (2) an overall overlap 

integral, Q, (3) a set of atomic positions, r, with (a) an 

average peak height, (b) an average number of matches and (c) 

an average standard deviation, and (4) an agreement factor 

based on the average peak heights and atomic positions. These 

data are accumulated and together form another "figure of 

merit" FOM2, which gives the overall acceptability of the 

solution. These figures of merit are calculated as: 

Q. R . SD . 
Equation 4.13. FOM„ = a ^ + a^ + a^ , 

2 9 «max ^ ^i ® SOi 

where is the overall overlap integral for solution i, Qj^^x 

is the maximum overall overlap integral for all images, is 

the agreement factor for solution i, R^^^ is the minimum 

agreement factor for all images, is the average standard 

deviation for solution i and SD . is the minimum average 
mm 

standard deviation for all images. The weighting factors a^, 

a^ and a^ have default values of 1/3, 1/3 and 1/3, which can 

be overridden. 

4.6. Averaging of Images 

As previously discussed, in Section 2, a superposition 

map normally contains many (equivalent) images of the 
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structure. With special care and with the application of (in 

most cases) at least two consecutive superpositions, the 

Pattterson function can, in theory, be reduced to a single 

image. In reality, this is rarely necessary. The fact that 

more than one image is present means that additional 

(potentially) useful information is available, e.g., atomic 

positions from additional images. To take advantage of this 

situation, ALCAMPS attempts to find the relationships between 

equivalent images and to appropriately transform them so that 

they can be averaged. At this point in the analysis, a number 

of apparently correct solutions will have been developed. As 

in the case of averaging atomic positions while they are being 

accumulated (Section 4.4), averaging equivalent images can 

produce a composite image which is more accurate and complete 

than any of its constituents. Since most individual images 

constructed by the above procedure (Sections 4.2, 4.3 and 4.4) 

are not truly complete, averaging will often bring crucial 

(for connectivity reasons) atoms into the composite images, 

thus simplifying the interpretation of the results. 

Equivalent (or averagable) images can be categorized into 

the following three classes; (I) images related to one another 

by the superposition vector, (II) images which have as their 

origins crystallographically equivalent symmetry sites and 

(III) images having origins which are not crystallographically 

equivalent, but where the respective distributions of atoms 

are equivalent. 
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Each of these situations can be considered by ALCAMPS 

when the transformations relating images are to be calculated. 

A more detailed discussion of these calculations will follow. 

Class (I) : For the purpose of illustration, assume that 

a single superposition has been performed and that the 

superposition vector can be identified, at least in part, as 

being the vector r^ = (ag-a^). Solutions corresponding to 

Ui = (u^,v^,w^) = (-2x^,-2y^,-2z^) and Ug = (UgfVg/Wg) = 

(ZXgfZygyZZg) would be contained in the list of possible 

solutions, where aj^ = (x^,y-j^,Zj^) , a2= (*2,y2r^2^ since the image 

from a2 is inverted. For such a situation, in a 

centrosymmetric space group, the following relationship will 

hold 

Equation 4.14. ^1+^2 " 2(X2-x^ ) ,2(y2-y]^ ) r 2( 22-2^^ ) 

= + ̂ 12 

where in this case t^g =0* In general, if the components of 

have one of the values 0,±1/2,±1,±3/2 or ±2, when 

u^+u2 and are compared using any two of the possible 

solutions, the solutions can be considered to be related by 

the superposition vector. Image a2, then, can be transformed 

such that (*2 ''^2 ' ' ̂̂2 ' ̂ ~ ^ ^ ̂ ~ ̂ *2'^2 '^2 ̂ and. averaged 

with image a^. 

In noncentrosymmetric space groups. Equation 4.14 will be 

slightly modified, in that a different relationship will hold 

in the polar direction. For example, the space group P2^ is 
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polar in the ^-direction because there are no symmetry 

operations which change the sign of the y-coordinate. The 

coordinates y^ and yg will have been arbitrarily chosen equal 

to one another by ALCAMPS, so the corresponding relationship 

would be 

Equation 4.15. U^+Ug = + t^g 

= [rg(x),0,rg(z)] + 2^2" 

In this case, image 2 would be transformed such that 

Classes (II) and (III) : For both of these other classes 

of equivalent images, the apparent transformations between 

images are not nearly so obvious and can be calculated in a 

number of different ways, subject to constraints which depend 

on the class. These are as follows: 

In reciprocal space - The atomic positions from each image can 

be used to calculate the phases, (j)(ïî), for the reflections 

used in the analysis. Any images with equal origin positions 

should have nearly identical phase predictions. Any two 

equivalent images with symmetry-equivalent (but not equal) 

origin positions (described as class II) will have 

characteristic phase relationships depending on the relative 

displacements of these origin positions from one another (see 
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Section 2.2.1). This phase difference will take the form of 

-2nË'Z where (for centrosymmetric structures) ̂  is the 

translation vector between the origins. By appropriately 

comparing the differences between the phases as calculated for 

the two solutions, ̂  can be determined. 

A slight modification to this would, however, be required 

for noncentrosymmetric structures. These types of structures 

have a handedness, which pre-empts indiscriminant calculation 

of these translations. One of the following situations will 

pertain for a noncentrosymmetric structure; (1Î the two images 

will both be forward images, (2) one will be forward and the 

other will be inverted or (3) both will be inverted (which for 

the purposes of this discussion is equivalent to (1)). If the 

images are either both forward or both inverted, the above 

procedure would result in the calculation of the desired 

vector "È. If, however, they are of opposite handedness, an 

alternative possibility for the transformation between the 

images could be calculated by negating the phases for one 

solution (thus reversing the handedness), and calculating a 

new vector One could determine whether the two images 

are of the same handedness or of opposite handedness by 

applying both transformations and deciding which provides the 

better agreement between the two solutions. 

Looking for specific interatomic vectors which work - If two 

particular images are correct images and reasonably complete. 
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then most of the more prominent atoms should be present in 

both images. The transformation between the two images must 

be the real interatomic displacement of equivalent atoms in 

the two images. In centrosymmetric structures, this 

transformation could be identified by carrying out a check of 

the averagability of the two Images upon simple displacement 

of one image by appropriately chosen vector differences 

between atoms in the respective images. 

Again, a modification of this procedure would be required 

for noncentrosymmetric structures. For these types of 

structures, averagability checks could be made with both sets 

of atomic positions as calculated, and then compared to the 

results of similar checks after one image or the other has 

been inverted through the respective origin position. 

Electron density overlap calculations - The transformations 

between solutions can alternatively be estimated using overlap 

calculations similar to those discussed in Section 4.3. 

Assuming two solutions representing electron density 

functions p^(r^) and are equivalent and related by 

the transformation 

^2 ~ ^12^1 + ^12 

Equation 4.16. and 

~ X  
2 ~ -12(^2 ~ ^12 



www.manaraa.com

77 

then the function calculated as; 

Equation 4.17. Q(s^2'^i2^ ~ ^ ̂ ^ 2^'^ 2^ dt 

= / Pi'?l'P2<Si2V^12' ' 

over all r^ 

will represent the overlap between p^fr^) and P2(r2). 

Using the previously descibed terminology (Section 2.1.2), 

p^fr^) and p^trg) can be expressed as 

Equation 4.18. p^tr^) = ^ E E^(ït) 

S 

Pgtrg) = è  ̂  Egt#) e"2*iH (sr^+tig) 

I Z Eo(it) g-2irifî*t^2 
" V ^ ̂ 2^ 

where Ë and FÎ range over the measured reflections and 

E^(h) and are the calculated structure factors for 

distributions p^(r^) and Pgtr^). Substituting these 

expressions for p^ and p^ into Equation 4.17 results in 

% ••+,—> 
Equation 4.19. = -? Z Z EifhXEgUH) ei2Trih ti2 x 

Ë a 

/ e-2iri(HS]^2+h)'r^ 

Since is to be a maximum, ïîs + ti = 0, 
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and 

-4 1 -4 -* 
Equation 4.20. Q(s^2'^12^ = - Z (-Hs >^2 ® 12. 

^ FÎ 

Q(S^2'^12^ calculated for all appropriate and 

t^2* The maximizing tranformation can be applied to P2(r2) as 

in Equation 4.16b, to produce P2(f2 ^ which should be exactly 

equivalent to p^(r^). 

For class II situations, the vectors ̂ ^2 will have 

components with values of 0, ±1/2, ±1, etc, and s will be any 

rotation or rotatory-inversion vector included in the set of 

space group symmetry operations. In the class III situation, 

?^2 can take on any possible values, but s should be 

included in the set of symmetry operations. 

ÀLCAMPS, in its present form uses Q-function calculations 

to ascertain the transformations relating possible solutions. 

Once the set of transformations has been accumulated, an 

averagability check is applied. ALCAMPS requires that a 

certain (user adjustable) fraction of the atoms in the 

transformed image (a2 above) be averagable (within the 

tolerance level specified) with an atom in the "best" image. 

If this check fails, the transformed image is not averaged in 

with the "best" image, but is considered as an alternative 

independent possible solution. 
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4.7. Distance - Angle Calculation 

Once the "best" solution (or composite solution) has been 

found, all bond distances and angles are calculated with 

limits defined by the input ranges. For a detailed discussion 

of the routine used for these calculations, see Section 10. 
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5. APPLICATION OF ALCÀMPS TO THE SOLUTION OF UNKNOWN 

STRUCTURES 

One could readily compile a list of requirements for an 

automated Patterson-based technique. Such a list should 

include the following criteria: (1) Obviously, an automated 

procedure should be able to solve structures. (2) To be 

universally useful, such a technique should be able to handle 

structures of all symmetry types, including both 

centrosymmetric and noncentrosymmetric cases. (3) Direct 

methods have, over the years, substantially replaced Patterson 

methods as the techniques of choice for equal atom structures. 

Patterson analysis (in particular manual analysis) is made 

somewhat more difficult in these cases because the Patterson 

is then composed of images which all have equivalent 

intensities. It is often difficult to eliminate incorrect 

solution possibilities and "atom" predictions. It would be 

advantageous if an automatic Patterson analysis procedure was 

able to overcome the difficulties these types of structures 

present. 

In this section, eight structures will be discussed. All 

but the first of these structures were solved by ALCAMPS and 

are included to demonstrate the ability of ALCAMPS to solve 

structures of widely varying complexities and compositions. 

Most address directly one or more of the requirements (or 
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expectations) mentioned above. Only those details pertinent 

to the discussion (and evaluation) of ALCAMPS will be included 

in this chapter. Additional structural details and 

appropriate tables will be relegated to Section 8 (Appendix 

A). A brief outline of the structures to be discussed and the 

reasons for their inclusion follows here. 

(1) W3(CCH2C(CH3)3)03Cr3(H20)3(02CC(CH3)3)3^2^ " The solution 

of this structure was initiated by hand using Vector 

Verification, since this structure was determined before the 

development of ALCAMPS. This example is included not only to 

illustrate the complexity of that method compared to the more 

automatic ALCAMPS, but also to show that Vector Verification 

can be successful even when applied to relatively complicated 

systems. 

(2) CgHgFe(C0)2(CS)PFg - This structure is included as an 

example in which a nearly complete solution was obtained 

directly from the Patterson without any prior deconvolution. 

(3) Fe(CO){CgHg)Fe(C0)3(P02CgH^2)2^^^2^^2^ ~ structure is 

technically a heavy atom structure, and therefore solvable 

using more standard Patterson methods, but does contain a 

considerable amount of organic material. The molecule 

crystallizes in the triclinic space group PÏ. Many previous 

Patterson methods relied heavily on high symmetry for the 

elimination of incorrect solutions. ALCAMPS solved the 

structure with no undue difficulty. 

(4) Cu(N2C^^Hg(0H)2)2d2'^^2® ~ This is an example of a simple 
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heavy atom structure, which revealed an interesting aspect of 

Patterson superposition analysis. This is the fact that 

Marker vector analysis can result in the generation of atomic 

distributions which are nearly identical to the correct 

distribution, but with completely different phase predictions. 

(5) Cd^QtSCHgCHgOHi^gtClO^lg'SHgO - This structure contains a 

massive molecule with considerable pseudo-symmetry and 6 

independent cadmium atoms, crystallizing in the monoclinic 

space group C2/c. 

(6) (NtCHgigtCMgC^HgligMOgCl^g - This is also a relatively 

complex structure with a high degree of pseudo-symmetry, which 

was not solvable using direct methods. It crystallizes in the 

orthorhombic space group Pcnb. 

(7) (ClHgNCgH^2Cl)~ This structure crystallizes in the 

noncentrosymmetric orthorhombic space group Pn2^a and was 

unsolvable via direct methods. 

(8) HgAKPO^)^ - This structure crystallizes in the hexagonal 

space group R3c, and the ALCAMPS results indicate how 

subgroup symmetry (C2/c) can be used for successful structural 

solution. 
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5.1. Vector Verification Solution of 

W3(CCHgC(CH3)3)03Cr3(H^O)3(O^CC(CH3)3)^2^ 

5.1.1. Discussion 

Vector Verification has been one of the most commonly 

used methods for retrieval of structural information from 

Patterson maps, prior to the development of more automatic 

analyses. This procedure begins with the accumulation of many 

possible "atomic" (meaning possibly real atomic) positions 

from Marker vector analysis. "Interatomic" vectors are then 

calculated from this list of positions. A Patterson map 

contains all real interatomic vectors, and only real 

interatomic vectors, so each possibility can be checked by 

verifying that appropriate "interatomic" vectors between it 

and other possible atomic positions are present in the 

Patterson map. In other words, if the calculated 

"interatomic" vectors of possibilities 1,2,3 and 4 are all 

present in the Patterson map, then the "atomic" positions for 

1,2,3 and 4 will very likely represent real atomic positions. 

From a unique set of atomic positions - there will be n 

equivalent sets, where n is the number of symmetry operations 

- phases can be calculated and the remainder of the structure 

identified. 

Since the determination of the structure of 

W3 (CCH2C(CH3 >3 )03Cr3(H20 >3(0200 (CH3) 3)5^2^ (see Figure 5.1) was 

undertaken prior to the development of ÀLCAMPS, the Vector 
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Figure 5.1. Structure of M2(CCH2C(CH2)2)Cr2(H20)g -

(OgCCtCHgigligl- Thermal ellipsoids are scaled 

to enclose 50% of the electron density. 
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Verification method was used. A sharpened Patterson map, with 

a grid of 128 x 64 x 128 grid points was calculated and the 

peak positions and heights were estimated using the program 

PIKR. This material crystallizes in the space group P2^/a and 

the Marker vector table is given in Table 5.1, along with the 

multiplicities and estimated peak heights (based on the 

assumed stoichiometry) for each type of vector. Each of the 

four columns of vectors is equivalent to the other three 

because they describe relationships relative to equivalent 

origin positions (inversion sites) in the unit cell. By 

convention, the first row is used. Table 5.2 shows the points 

along the appropriate Marker plane and line which have 

sufficient intensity to be considered W-W vectors. Following 

standard Marker vector analysis, each (-2x,-2z) pair is 

combined with each possible value of -2y to form possible 

triples (-2x,-2y,-2z). In order to be retained for further 

consideration, any possible (-2x,-2y,-2z) must be a vector 

present in the Patterson map. Table 5.3 contains a list of 

the 20 largest triples which are present in the map, along 

with their peak heights and the corresponding atomic positions 

(x,y,z). Analysis of Table 5.3a reveals that the vectors are 

actually grouped in the quartets (-2x,-2y,-2z); (-2x,2y,-2z); 

(2x,-2y,2x); (2x,2y,2z). This is to be expected as the 

Patterson map possesses the Laue symmetry of the space group; 

in this case P2/m. 

What is represented, then, in Table 5.3b, is a list of 5 
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Table 5.1. Marker Vector Table for the Space Group P2^/a 

x,y,z 5-x,|+y,-z |+x,|-y,z -x,-y,-z 

X ,  y.z 1 0,0,0 ^+2x,|,2z |.|+2y,0 2x,2y,2z 

i-x. j+y,-z 1 Hx,!, -2z 0,0,0 -2x,2y,-2z j<'|+2y,0 

l+x. E-y/z 1 f,i-2y ,0 2x,-2y,2z 0,0,0 ^+2x,^,2z 

- X ,  -y,-z 1 -2x,-2y, -2z ;,|-2y,o |-2x,|,-2z 0,0,0 

Type of Vector Multiplicity Estimated Peak Height* 

i±2x. Jr ±2z 2 212 

f' 2-
2y, 0 2 212 

±2x, ± 2y, ±2z 1 106 

^ Peak heights estimated for W - W interactions. 

Table 5.2. Marker Vectors^ for 
W3(CCH2C(CH3)3)03Cr3(HgO)3(OgCC(CH3 >3)12^ 

From Marker Line From Marker Plane 
1/2-2X -2z Pk Mt 1/2-2V Pk Ht 

10.2 26.4 697 40.5 706 
117.8 37.6 697 87.5 706 
15.2 37.4 431 27.0 365 
112.8 26.6 431 101.0 365 
5.2 15.3 417 

122.8 48.7 417 
29.2 23.4 362 
98.8 40.6 362 

^ Number of grids points in a-, b- and c-directions: 128, 
64, 128. 
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Table 5.3. Results of Marker Vector Analysis^ for 
W3 (CCH2C(CH3 )3 )03Cr3(H20)3(0200(^3)3)^2^ 

# -2x -2v -2z Ht 

1 74.2 23.4 26.4 423 
2 74.2 104.6 26.4 423 
3 53.8 23.4 37.6 423 
4 53.8 104.6 37.6 423 

X V z 

26.9 52.3 18.8 
26.9 11.7 18.8 
37.1 52.3 13.2 
37.1 11.7 13.2 

5 69.0 40.5 11.0 464 29.5 43.8 26.5 
6 59.0 40.5 53.0 464 34.5 43.8 5.5 
7 59.0 87.5 53.0 464 34.5 20.2 5.5 
8 69.0 87.5 11.0 464 29.5 20.2 26.5 

9 48.8 24.4 26.6 223 39.6 51.8 18. 7 
10 79.2 24.4 37.4 223 24.4 51.8 13.3 
11 48.8 103.6 26.6 223 39.6 12.2 18.7 
12 79.2 103.6 37.4 223 24.4 12.2 13.3 

13 69.2 20.6 15.4 220 29.4 52.7 24.3 
14 58.8 22.6 48.6 220 34.6 52.7 7.7 
15 58.8 105.4 48.6 220 34.6 11.3 7.7 
16 69.2 105.4 15.4 220 29.4 11.3 24.3 

17 93.2 37.0 23.4 191 17.4 45.5 20.3 
18 34.8 37.0 40.6 191 46.6 45.5 11.7 
19 34.8 91.0 40.6 191 46.6 18.5 11.7 
20 93.2 91.0 23.4 191 17.4 18.5 20.3 

^ Number of grid points in a-, b- and c-directions: 128, 
64 and 128. 

possible independent sets of atomic positions. In each set, 

each of the 4 equivalent positions for each independent "atom" 

is calculated relative to a different origin. The trick is to 

group atoms by common origin. In addition, only 3 independent 

tungstens are expected to be present; some of the apparent W-W 

Marker vectors are false. Vector Verification will usually 

reveal which "atoms" don't belong. 
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In fact. Table 5.4 shows that "atoms" 1 through 8 are not 

real. All interatomic vectors were calculated based upon the 

positions in Table 5.3b, and those which were present in the 

Patterson are tabulated in Table 5.4. Clearly, "atoms" 9 

through 20 are internally consistent and should be considered 

to be legitimate possibilities. The possible groupings are; 

(1) 9,14,18, (2) 10,13,17, (3) 11,15,19, and (4) 12,16,20. 

The group 11,15,19 was chosen for phase calculation and 

refinement. After extensive refinement and repeated electron 

density map calculations, the positions of the remaining 100 

non-hydrogen atoms in the asymmetric unit of the structure 

were resolved. 

Table 5.5 contains the fractional coordinates for the 

three tungsten atoms as calculated from the Patterson, and 

Table 5.6 lists the fractional differences between these 

positions and the refined positions. Comparisons of the 

tungsten-tungsten bond distances and angles are given in 

Tables 5.7 and 5.8. 

For a more detailed discussion of the chemistry and 

molecular structure of this material, see Section 8.1. 

5.1.2. Evaluation 

This structure was successfully solved by finding the 

positions of the three tungsten atoms and using the phases 

calculated from these positions (using Equation 2.15) to 

identify additional atoms. The phases thus calculated would 
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Table 5.4 Results of Vector Verification for 
W3 ( CCHgC ( CH3 ) 3 ) 03Cr3 {H^O ) 3 ( O^CC ( CH3 ) 3 ) ̂̂ 2 ̂  

TO 
FROM 

(1,2, 
3.4) 

(5,6, 
7.8) 

(9,10, 
11.12) 

(13,14, 
15.16) 

(17,18, 
19.20) 

(1,2, 
3,4) 

4-7 4-11 
4-12 

4-15 
4-16 

4-19 

(5,6, 
7,8) 

7-4 5-10 5-13 6-18 
8-20 

(9,10, 
11,12) 

11-4 
12-4 

10-5 
9-14 

10-13 
11-15 
12-16 

9-18 
10-17 
11-19 
12-20 

(13,14, 
15,16) 

15-4 
16-4 

13-5 
16-8 

13-10 
14-9 
15-11 
16-12 

13-17 
14-18 
15-19 
16-20 

(17,18, 
19,20) 

19-4 18-6 
20-8 

17-10 
18-9 
19-11 
20-12 

17-13 
18-14 
19-15 
20-16 
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Table 5.5. Fractional Positions^ (xlO^) Derived From Vector 
Verification for 
W3(CCHgCtCHg)3)OgCrg(HgO)3(OgCC(CH3 >3)12^ 

ATOM X Y Z 

Ml 2703 883 1203 
W2 3641 1445 1828 
W3 3094 953 2922 

^ Positions are given as fractions of the unit cell. 

Table 5.6. Fractional Deviations^ (xlO^) for 
W3(CCH^C(CH3)3)03Cr3(H^O)3(OgCC(CH3)3)^2^ 

ATOM X 

m -7 3 0 
W2 6 -6 -5 
W 3  1 0 - 4  

^ Deviations are given as fractions of the unit cell 

Table 5.7. Bond Distances for 
W3(CCH2C(CH3)3)03Cr3(H^O)3(02CC(CH3)3)12^ 

Distances 
Atoms Refined V. V. A(A) 

W1-W2 2.631 2.63 0.00 
W1-W3 2.641 2.64 0.00 
W2-W3 2.657 2.65 -0.01 
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Table 5.8. Bond Angles for 
W3(CCHgC(CH3)3)OgCrg(H^O)3{O^CC(CH3 

Atoms 
Angles 

Refined V. V. A(°) 

W2-W1-W3 60.5 60.5 0.0 
W1-W2-W3 59.9 59.9 0.0 
W1~W3—W2 59.6 59.6 0.0 

not be expected to be very accurate. In fact, only the iodine 

and chromium atoms were readily identifiable in the earlier 

electron density maps. Many least squares refinements of 

atomic positions and electron density map calculations were 

required before the carbon atom positions could be resolved. 

The above process of calculating many successive electron 

density maps is usually successful, but always time consuming 

and relatively inefficient. Knowledge of a much larger 

fraction of the electron density at the start of refinement 

would significantly reduce the time and effort required in 

identifying all atoms. This structure was not solved using 

ALCAMPS (no attempt was made because time was devoted instead 

to the solving of other unknown structures), but a number of 

structures with comparable complexity have been. The results 

from some of these experiments, presented later in this 

section, reveal that we can (at this time, using ALCAMPS) 

identify a large fraction of the electron density in complex 

structures like this one, without the use of electron density 

maps. 
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5.2. ALCAMPS Solution of C^H^Fe(CO)2<CS)PF^ 

5.2.1. Discussion 

The heavy atom method for phase determination works on 

the assumption that the heavy atom(s) represent a significant 

portion of the overall density , where 

represents the atomic number of the heavy atom, the atomic 

numbers of the light atoms and K is in the range 1/2 to 1). 

This condition is normally met with organometallic compounds 

as they typically contain central metal atoms surrounded by 

organic ligands. In such cases, identification of the metal 

atom position;s) from Marker vector analysis followed by 

electron density calculation based on the derived phases will 

result in elucidation of the remainder of the structure. A 

significant fraction of organometallic crystalline compounds, 

however, is resistant to this type of analysis. This usually 

occurs in compounds having large density contributions from 

the ligands themselves. In such cases, then, the phase 

predictions based only upon the metal atom(s) are largely 

erroneous and subsequent electron density maps are worthless. 

Clearly, to solve this dilemma requires the identification of 

many atomic positions rather than just one, before the phases 

are calculated. 

This can of course, be done by performing a Patterson 

superposition and solving the structure using ALCAMPS. A 

simpler way, however, might be to work with the Patterson map 
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itself. Once the position of a single atom is deduced from 

the Patterson using Marker vector analysis, it is a simple 

matter for ALCAMPS to compile a complete list of "atom" 

positions consistent with the image thus identified. This is 

a significant deviation from our earlier premise that the 

Patterson must be partially deconvoluted to retrieve useful 

information. The number of unwanted peaks in the Patterson 

map and the complexity of the overlap between images are 

usually enough to dissuade one from such an attempt. We have 

found that the use of ALCAMPS in such a procedure can be very 

successful. Application of "symmetry matching", where most or 

all symmetry partners are required to match within relatively 

small distances, will usually remove most if not all peaks 

which are not part of the appropriate image. 

One of the real difficulties in working with a Patterson 

map rather than a superposition map is that the peaks are more 

extensively distorted by the overlap of not quite equivalent 

interatomic vectors. This distortion can result in the 

misidentification or dislocation of "atom" positions which 

would degrade the solution. ALCAMPS significantly reduces 

this problem by averaging the symmetry-related positions as 

they are accumulated. 

The compound CgH^Fe(CO)2(CS)PF^, Figure 5.2, is an 

example of an organometallic structure which might be expected 

to resist attempts at the standard heavy atom method of 

solution. The value for K in the above expression is 0.27. 
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Figure 5.2. Structure of CgH5Fe(C0)2(CS)PFg. Thermal ellipsoids are 

scaled to enclose 50% of the electron density. 
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This structure determination, therefore, was carried out using 

ALCAMPS directly on the Patterson. The results of this 

analysis are outlined in Table 5.9. Quick analysis of the 

Patterson map revealed the probable position of the iron atom. 

Table 5.9. ALCAMPS Data Table for CgHsFetCOlgtCSiPFs 

Space Group C2/ C  

No. o f  Symm. Ops 8 

No. of Matches Required 6 

No. of Refis Used 200 

Size of Map X: 64 Y :  64 Z: 

A / Grid X: 0.24 Y; 0.22 Z; 

No. of Peaks in Map 1758 

Tolerance, Grids 2.0 

Solution Supplied U: 39.77 V; 21.55 W: 

No. of Atoms (total) in Image 31 

No. of Atoms (correct) in Image 19 

No. of Non-hydrogen Atoms in Structure 22 

Avg. No. of Matches 7.2 ( out 

Avg. Std. Dev., A 0.08 

Resid. Agreement Factor, % 33.1 

Avg. Deviation in Distances, A 0.12 

Avg. Deviation in angles, ° 4.9 
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That information along with the cell parameters and the 

apparent stoichiometry was given to ALCAMPS and the majority 

of the structure was returned. All non-hydrogen atoms except 

for one carhonyl oxygen and two fluorine atoms were readily 

identified from distance and angle calculations. It was later 

realized that the two fluorine atoms which were not resolved 

by ALCAMPS were positionally delocalized, presumably due to 

disordering. 

Table 5.10 shows the ALCAMPS results and Table 5.11 

contains the errors in the positions, i.e, the differences 

between the ALCAMPS results and the refined positions. Table 

5.10 shows that of ALCAMPS' top ("best") 26 "atoms" based on 

average peak height, number of matches and standard deviation; 

20 are correct (the positions for real atoms) and all but one 

of the top 12 are correct. Also included in Table 5.10 is a 

list of the actual average peak heights. Since the peak 

heights in Patterson and superposition maps should be 

proportional to the atomic numbers of the atoms whose 

interatomic vectors are represented, these average peak 

heights should be instructive when deciding on the identities 

of the atoms in the image. 

Possibly the most important comparisons to be made are 

those between the respective interatomic distances and angles. 

Tables 5.12 and 5.13 show these comparative distances and 

angles. Notice that, whereas the overall average differences 

between distances and angles are (0.12 A) and (4.9° ), 
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Table 5.10. ÀLCAMPS Atomic Coordinates^ (xlO^) for 
CgHgFe(CO)2(CS)PFg 

ATOM # PK HT X Y Z # MAT S.D.(A) 

Fe 1 862 1890 1679 1972 8 .01 
S 5 353 1456 3331 -45 8 .03 

01 7 264 -271 1667 1004 8 .07 
Cl 18 79 1638 2702 572 6 .02 
C2 6 100 560 1665 1299 8 .02 
C3 19 74 1829 674 1058 8 .13 
C4 14 70 2229 1246 3599 8 .08 
C5 20 76 2176 2267 3440 8 .17 
C6 23 120 3068 2649 3138 6 .07 
C7 26 91 3288 1672 2834 6 .09 
C8 22 127 3068 1030 3138 6 .07 
PI 2 398 0 1046 7500 8 .02 
P2 3 363 0 4419 2500 8 .03 
F1 10 122 0 -54 7500 8 .08 
F2 8 221 0 2253 7500 8 .06 
F4 11 66 54 1058 6348 8 .05 
F5 12 153 0 3319 2500 8 .22 
F6 9 90 0 5566 2500 8 .03 
F8 17 60 -837 4430 2868 8 .09 

^ Atomic coordinates are given as fractions of the unit 
cell. 
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Table 5.11. Fractional Deviations^ (xlO^) for 
CgHgFe(CO)2 (CS)PFg 

ATOM X Y Z 

Fe 13 -9 40 
S 6 -23 28 
01 67 -12 123 
Cl -34 133 -267 
C2 48 7 -11 
C3 -26 24 -34 
C4 -47 -96 -86 
C5 -55 -86 -93 
C6 107 36 -104 
C7 -156 -92 -374 
C8 42 42 -350 
PI 0 25 0 
P2 0 -32 0 
F1 0 70 0 
F2 0 84 0 
F4 6 34 28 
F5 0 12 0 
F6 0 -33 0 
F8 -24 4 6 

Average deviation -3 5 -58 

Average error^ 33 45 81 

^ Deviations are given as fractions of the unit cell. 

^ The error is defined here as the absolute value of the 
deviation. 
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Table 5.12. Comparative bond distances for C^HçFe(CO) 2(CS) 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

Fe - CI 1.788(4)* 1.89 0.10 
Fe - C2 1.816(4) 1.76 -.06 
Fe - C3 1.803(4) 1.81 0.01 
Fe - C4 2.117(4) 2.02 -.10 
Fe - C5 2.099(4) 1.93 -.17 
Fe - C6 2.097(4) 1.90 — .20 
Fe - C7 2.105(4) 1.84 -. 26 
Fe - C8 2.119(4) 1.88 -.24 
S - CI 1.521(4) 1.59 .07 
01 - C2 1.124(5) 1.13 -.01 
C4 - C5 1.409(6) 1.42 .01 
C5 - C6 1.412(6) 1.61 .20 
C6 - C7 1.403(7) 1.14 -. 26 
C7 - C8 1.399(7) 1.10 -.30 
C8 - C4 1.401(6) 1.72 .32 
PI - F1 1.583(4) 1.52 -.06 
PI - F2 1.587(4) 1.67 .08 
PI - F4 1.599(2) 1.57 -.03 
P2 - F5 1.582(4) 1.52 -.06 
P2 - F6 1.587(4) 1.59 0.00 
P2 - FB 1.560(5) 1.60 0.04 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 5.13. Comparative bond angles for CgH^Fe(CO)2(CS)PF^ 

ATOMS REFINED(°) ALCAMPS(°) A(0) 

CI - Fe - C2 88.7(2)* 85.5 -3.2 
CI - Fe - C3 96.1(2) 77.4 -18.7 
C2 - Fe - C3 93.4(2) 90.8 -2.6 
Fe - C2 - 01 176.0(4) 171.6 -4.4 
C8 - C4 - C5 107.6(4) 96.1 -11.5 
C4 - C5 - C6 107.8(4) 97.3 -10.5 
C5 - C6 - C7 108.0(4) 118.4 10.4 
C6 - C7 - C8 107.9(4) 109.2 1.3 
C7 - C8 - C4 108.8(4) 115.0 6.2 
F1 - PI - F2 180.0 180.0 0.0 
F1 - PI - F4 90.2(1) 90.6 0.4 
F2 - PI - F4 89.2(1) 89.4 0.2 
F5 - P2 - F6 180.0 180.0 0.0 
F5 - P2 - F8 88.7(2) 90.5 1.8 
F6 - P2 - F8 91.3(2) 89.5 -1.8 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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respectively, the averages are significantly lower (0.05 A) 

and (3.3° ) for those interactions not including the 

cyclopentadienyl (cp) atoms. In general, "cp" rings are 

notorious for often being disordered, so it is not surprising 

that the results for these atoms are not so reliable. In 

addition. Table 5.12 reveals that the Fe-C distances 

calculated by ALCAMPS are much shorter than the corresponding 

refined distances. The iron atom is at the origin of this 

image and it is a common phenomenon that peaks near the origin 

of Patterson maps are somewhat displaced from their correct 

positions, when the origin peak is not removed. The Patterson 

maps we work with do not have their origins removed and the 

result is apparent in this case. 

From this initial model of the structure, positional 

refinement was performed and the remaining atoms were found in 

a subsequent electron density map. 

5.2.2. Evaluation 

The results presented here are significant because they 

demonstrate that structures can be solved directly (and 

automatically) from Patterson maps. This can be a very useful 

tool, since it allows quick identification of the atomic 

structure without lengthy refinements and electron density 

calculations. The atomic positions generated by ALCAMPS for 

this structure are clearly accurate enough to make identifying 

the atoms a simple matter. 
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5.3. ALCAMPS Solution of 

Fe(CO)< C5H5)Fe(CO)3(POgC^Hig> 2(CHgClg) 

5.3.1. Discussion 

This interesting compound, see Figure 5.3 for a pictorial 

representation and Table 5.14 for unit cell and data 

collection information, was synthesized in Dr. Verkade's 

research group (Department of Chemistry, Iowa State 

University) and crystallizes in the triclinic space group 

PI. As mentioned before, previous Patterson-based methods 

have relied rather heavily on symmetry for the correct 

determination of the electron density origin and calculation 

of atomic positions from analysis of Marker vectors. The 

space group PÏ has no Marker vectors and any interatomic 

vector of an appropriate size can represent the inversion 

related vector (-2x,-2y,-2z), This normally complicates the 

analysis, but our results here will reveal that these 

complications are readily overcome by ALCAMPS. 

A weighted superposition was carried out using a vector 

whose height was approximately that expected for the overlap 

of two Fe-P interatomic vectors, and the structure 

determination was initiated. In superposition maps which have 

been calculated from the use of only one unweighted shift 

vector, there will be a perfect inversion center at a point 

halfway along the superposition vector. This can be proven 
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Figure 5.3. Structure of Fe(CO) (CgHg)Fe(C0)g(P02CgH]^2)2(CH2Cl2). The 

solvent is not included. Thermal ellipsoids are scaled 

to enclose 50% of the electron density. 
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Table 5.14. Crystal Data for 
Fe(CO) {C5H5)Fe(C0)3(P02CgH3^2^2^^"2^^2' ' 

Formula(Mol. Wt.) 

a, A 

b 

c 

P 

y  

V, 

z 

Crystal System 

Space Group 

Radiation, A 

Crystal size, mm^ 

Temperature, K 

20 Range 

No. of Refis Collected 

No. of Observed Refis 

R (refinement), % 

R^ (refinement), % 

Fe2Cl2P20gC22H3i (667.53) 

11.558(6) 

15.962(9) 

9.687(5) 

105.11(4) 

106.04(4) 

101.17(4) 

1588.8(15) 

2 

triclinic 

Pi 

MoK^^, 0.71034 

0.10 X 0.20 X 0.40 

298 

0° <= 20 <= 40° 

2953 

1473 

9.5 

11 .6  
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using the vector set notation discussed in Section 2.3. 

If the superposition vector r^ is equal to (ag-a^), 

then the set of vectors remaining after the superposition 

contains U {aj-a^}. The image as seen from a^ 

inverted about the halfway point would be represented by 

£a^-ai}' = (a^-aj} + l/Zfa^-a^) 

= {l/Zfa^+agi-aj}, 3=1,N 

and the image as seen from ^2 inverted about the halfway point 

would be represented by 

Ca^-ai}' = Ca^-a2Î + l/2(a2-a^) 

= {a_-l/2(a2+a^)}, i=l,N. 

These two sets are the inverses ot one another and the halfway 

point is therefore an inversion point. 

This is a crucial point to be considered. The only 

symmetry used by ALCAMPS in this space group is the inversion 

symmetry. The superposition vector could easily be contused 

with the inversion vector (-2x,-2y,-2z). ALCAMPS relies 

rather heavily on the probability of each chosen vector being 

an acceptable inversion vector, as estimated from Q-function 

calculations. Since the superposition vector would give the 

best value by such a test, but not often the one desired, the 
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results from the Q-function calculations, tor the space group 

Pi, are given lower weights in the FOM calculations. 

In this case, the superposition vector did have the 

highest relative inversion overlap (Q = 100.0), but the vector 

determined to be the best possibility for (-2x,-2y,-2z) had a 

relative Q value of 64.2 and the best residual agreement 

factor (R = 30.9% versus R = 39.9% for the superposition 

vector related solution). 

Table 5.15 is a tabulation of the ALCÀMPS results for 

this averaged solution. A projection onto the least squares 

plane of this molecule, as plotted by ALCAMPS, is shown in 

Figure 5.4. The lines, representing bonds, were drawn by hand 

following the connectivity indicated by the bond distances and 

angles given. Tables 5.16 and 5.17 list the refined atomic 

positions and the positions as determined by ALCAMPS, 

respectively, and Table 5.18 contains the corresponding 

deviations. Tables 5.19 (bond distances) and 5.20 (bond 

angles) indicate that, once again, ALCAMPS has produced a very 

good solution (average deviations in; distances = 0.12 A, and 

angles = 4.9°). 

Table 5.17 reveals that 28 of ALCAMPS' "best" 31 atoms 

were correct and that 32 out of the total of 36 non-hydrogen 

atoms were identifiable. One interesting feature of this 

result is that subsequent least squares refinements and 

electron density map calculations revealed that there is some 
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Table 5.15 ALCAMPS Data Table for 
Fe(CO)(CgHg)Fe(CO)3(P02CgH^2 >2 ̂ CHgClg) 

Space Group PÏ 

No. of Symm. Ops 2 

No. of Matches Required 2 

No. of Refis Used 250 

Size of Map X: 32 Y: 64 Z; 32 

A / Grid X; .361 Y: .249 Z: .303 

No. of Peaks in Map 691 

Tolerance, Grids 2.00 

Superposition Vector SX: 29.29 SY: 26.25 SZ: 1.59 

No. of Possible Solutions 14 

No. of Solutions Averaged 2 

Solutions U^; 23.90 : 21.01 : 24.26 

U^: 2.44 Vg: 30.77 Mg: 10.90 

No. of Atoms (total) in Image 49 

No. of Atoms (correct) in Image 32 

No. of Nonhydrogen Atoms in Structure 36 

Avg. No. of Matches 3.4 (out of 4) 

Avg. Std. Dev., A 0.11 

Resid. Agreement Factor, % 30.8 

Avg. Deviation in Distances, A 0.10 

Avg. Deviation in angles, ° 5.1 
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42 

Figure 5.4. ALCAMPS generated projection of Fe(CO)(CgHg) 

Fe(CO)3(> 2 < CHgClg). 
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Table 5.16. Refined Atomic Coordinates^ (xlO^) for 
F e ( C O ) ( C 5 H 5 ) F e ( C O ) 3 ( ) 2  < C H g C l g )  

ATOM X Y Z 

Pel -392 2587 -1678 
Fe2 1261 3344 1239 
PI 1628 2850 -790 
P2 -382 2236 345 
01 -20 3712 -3502 
02 -1057 763 -3754 
04 2786 2343 2812 
07 294 1277 492 
08 -1619 2222 862 
09 2466 3519 -1323 
010 2308 2046 -1106 
CI -145 3291 -2774 
C2 -794 1500 -2947 
C3 -1815 2828 -1723 
C4 2190 2713 2229 
C7 -1332 808 835 
C8 -1921 1533 1494 
C9 3390 3101 -1824 
CIO 3322 2253 -1618 
C12 -1084 188 1585 
C13 -1775 1256 3848 
C14 3855 3032 -1720 
CIS 2709 2732 -3818 
C19 2519 4661 3929 
C20 1118 4187 3348 
C21 458 4382 1948 
C22 1519 4657 1357 
C23 2786 4647 2300 
CIS 2741 5660 4925 
Cll 4390 6199 5529 
C12 2385 5608 6609 

^ Atomic coordinates are given as fractions of the unit 
cell. 



www.manaraa.com

110 

Table 5.17. ALCAMPS Atomic Coordinates^ izlO^) for 
Fe(CO)(CgHg)Fe(CO)3(PO^C^H^g)2 <CH^Clg) 

ATOM # PK HT X Y Z # MAT S.D.(A) 

Fel 2 262 -384 2595 -1665 4 .05 
Fe2 1 304 1268 3361 1249 4 .05 
PI 4 240 1618 2838 -820 4 .08 
P2 à  277 -392 2175 280 4 .07 
01 25 67 — 88 3784 -3649 4 .12 
02 18 72 -1023 773 -3728 4 .08 
04 15 58 2713 2419 2745 4 . 06 
07 11 69 336 1223 542 4 .06 
08 8 156 -1643 2316 884 4 .08 
09 16 111 2440 3513 -1405 4 .11 
010 10 88 2337 2063 -1067 4 .06 
CI 27 50 -69 3274 -2620 4 .12 
C2 13 53 -725 1575 -2772 4 .06 
C3 31 50 -1539 3133 -1284 4 .14 
C4 26 65 2017 2772 1964 4 .13 
C7 17 47 -1370 779 878 4 .06 
C8 7 60 -1996 1465 1432 4 .04 
C9 29 37 3430 3141 -1903 4 .11 
CIO 38 33 3647 2416 -1155 2 .07 
C12 24 55 -814 168 1768 4 .10 
C13 30 56 -1440 1996 3181 4 .15 
C14 22 46 4434 3827 -1952 4 .09 
CIS 43 49 2632 2791 -3694 2 .17 
C19 21 56 2568 4779 4033 4 .08 
C20 36 52 1019 4148 3408 2 .04 
C21 19 53 556 4495 2010 4 .08 
C22 23 40 1468 4675 1376 4 .08 
C23 9 53 2732 4625 2374 2 .02 
CIS 42 58 2502 5393 4925 2 .20 
CLl 6 166 4393 6216 5572 4 .07 
CL2 5 154 2408 5630 6640 4 .06 

^ Atomic coordinates are given as fractions of the unit 
cell. 
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Table 5.18. Fractional Deviations^ (xlO^) for 
Fe(CO)(CgHg)Fe(CO)3(POgC^H^g)2 < CH2CI2) 

ATOM X Y Z 

Fel 8 8 13 
Fe2 7 17 10 
PI -10 -12 -30 
P2 -10 -61 -65 
01 -68 72 -147 
02 34 10 26 
04 -73 76 -67 
07 42 -54 50 
08 -24 94 20 
09 -26 -6 -82 
010 28 17 39 
CI 76 -17 154 
C2 69 75 175 
C3 276 305 439 
C4 -173 59 -265 
C7 -38 -29 43 
C8 -75 -68 -62 
C9 40 40 -79 
CIO 325 163 463 
C12 270 -20 183 
C13 335 740 -667 
C14 579 795 -232 
C18 -77 59 124 
C19 49 118 104 
C20 -99 -39 60 
C21 98 113 62 
C22 -51 18 19 
C23 -54 -22 74 
CIS -239 -267 0 
Cll 3 17 43 
C12 23 22 31 

Average deviation 40 72 14 

Average error^ 106 110 123 

^ Deviations are given as fractions of the unit cell. 

^ The error is defined here as the absolute value of the 
deviation. 
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Table 5,19. Comparative bond distances for 
Fe(CO> (C5H5 )Fe(CO) 3(PO^C^Hj^CH^Clg) 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

Fel - PI 2.17 2.15 -.02 
Fel - P2 2.17 2.16 -.01 
Fel - Cl 1.77 1.65 -.12 
Fel - C2 1.73 1.60 -.13 
Fel - C3 1.75 1.79 0.04 
Fe2 - PI 2.11 2.14 0.03 
Fe2 - P2 2.11 2.19 0.08 
Fe2 - C4 1.86 1.56 -.30 
Fe2 - C20 2.20 2.27 0.07 
Fe2 - C21 2.11 2.17 0.07 
Fe2 - C22 2.03 2.03 0.00 
Fe2 - C23 2.18 2.15 -.03 
PI - 09 1.63 1.61 -.02 
PI - 010 1.64 1.62 -.02 
P2 - 07 1.59 1.61 0.02 
P2 - 08 1.64 1.72 0.08 
Cl - 01 1.11 1.44 0.33 
C2 - 02 1.16 1.28 0.12 
C4 - 04 1.12 1.26 0.14 

C19 - C20 1.48 1.72 0.24 
C20 - C21 1.50 1.59 0.09 
C21 - C22 1.53 1.38 -.15 
C22 - C23 1.45 1.54 0.09 
C23 - C19 1.56 1.63 0.07 
07 - C7 1.45 1.42 -.03 
08 - C8 1.42 1.62 0.20 
C7 - C8 1.54 1.47 -.07 
09 - C9 1.42 1.52 0.10 
010 - CIO 1.41 1.54 0.13 
C9 - CIO 1.41 1.54 0.13 

CIS - cil 1.79 2.14 0.35 
CIS - C12 1.79 1.65 -.14 
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Table 5.20. Comparative bond angles for 
Fe(CO)(C5H5)Fe(CO)3(POgCsHig> 2(CHgClg) 

ATOMS REFINED(°) ALCAMPS(°) A(°) 

PI - Fel - P2 85.4 86.1 0.7 
PI - Fel - CI 87.4 84.1 3.3 
PI - Fel - C2 99.5 97.2 2.3 
PI - Fel - C3 154.3 138.8 -15.5 
P2 - Fel - CI 157.7 158.3 0.6 
P2 - Fel - C2 98.1 92.8 5.3 
P2 - Fel - C3 87.2 85.6 1.6 
Fel - CI - 01 177.7 167.2 -10.5 
Fel - C2 - 02 177.8 176.6 -1.2 
PI - Fe2 - P2 88.3 85.5 -2.8 
PI - Fe2 - C4 93.4 89.6 -3.8 
P2 - Fe2 - C4 91.7 87.7 -4.0 
Fel - PI - Fe2 79.3 78.9 -0.4 
Fel - PI - 09 120.3 117.0 3.3 
Fel - PI - 010 122.1 124.8 2.7 
Fe2 - PI - 09 120.8 119.9 -0.9 
Fe2 - PI - 010 123.8 122.5 -1.3 
09 - PI - 010 93.8 96.0 2.2 
PI - 09 - C9 111.1 112.7 1.6 
09 - C9 - CIO 112.8 106.8 -6.0 
PI - 010 - PI 114.6 113.0 -1.6 
Fel - P2 - Fe2 79.0 77.5 -1.5 
Fel - P2 — 07 123.3 133.4 10.1 
Fel - P2 - 08 118.1 113.5 -4.6 
Fe2 — P2 - 07 119.9 122.0 2.1 
Fe2 - P2 - 08 124.7 115.5 -9.2 
07 - P2 - 08 94.8 98.7 3.9 
P2 - 07 - C7 113.6 80.6 -23.0 
07 - C7 - C8 106.3 110.2 3.9 
C8 - 08 - P2 114.4 104.3 -10.1 
C19 - C20 - C21 110.6 95.9 -14.7 
C20 - C21 - C22 102.8 112.4 9.6 
C21 - C22 - C23 108.7 110.3 1.6 
C22 - C23 - C19 107.6 102.8 -4.8 
C23 - C19 - C20 99.9 98.0 -1.9 
Cll - CIS - C12 107.8 97.3 -10.5 
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disordering of the phosphorus-containing rings and that atom 

CIO and the methyl carbons attached to it actually partially 

occupy two sites each. Considering this, it is not surprising 

that ALCÀMPS missed these atoms. Another interesting fact is 

that according to the synthesis and chemical analyses, the 

cyclopentadienyl group wasn't supposed to be there at all. 

There is no doubt about its presence in the ALCAMPS output. 

The correct stoichiometry need not be known for ALCAMPS to 

solve the structure! 

This structure will not be discussed in any more detail, 

since its inclusion here was merely to illustrate another 

important capability of ALCAMPS. 

5.3.2. Evaluation 

Triclinic crystals pose no particular difficulties for 

ALCAMPS, as evidenced by these results. As mentioned, it has 

long been thought that high symmetry is needed to successfully 

unravel the Patterson function. Clearly, by using ALCAMPS, we 

can automatically solve reasonably complex structures using 

only the limited symmetry of the space group Pi and a map 

resulting from a single superposition. 
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5.4. ALCAMPS Solution of Cu(N2Cj^j^Hg(OH) 2) 2^2' 2H2O 

5.4.1. Discussion 

This structure - see Figure 5.5 for an ORTEP generated 

projection - represents a relatively simple organometallic, 

with a single heavy atom per molecule. As a result of this, 

the ALCAMPS solution of this structure was very routine. 

An interatomic vector corresponding to a Cu-Cl 

interaction - and therefore one of the very largest peaks in 

the Patterson map - was used for a weighted superposition. 

ALCAMPS was run in the space group C2/c, and six apparently 

acceptable solutions were obtained. Two of these, a Cu image 

and a CI image, were found to be related by the superposition 

vector and averagable, and therefore were appropriately 

transformed and averaged. Figure 5.6 shows a projection onto 

the least squares plane of this averaged image as generated by 

ALCAMPS. The complete molecule, except for one bipyridyl 

carbon, is clearly identifiable from this picture and the bond 

distances and angles given in Tables 5.24 and 5.25 confirm the 

identification. The water oxygens and the chlorine were 

present in the final averaged image, but were not included in 

the projection because they were not bound to any part of the 

remainder of the structure, within the distance range 

specified. Table 5.21 is a compilation of the data relavent 

to this analysis. Table 5.22 contains the ALCAMPS atomic 
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Figure 5.5. Structure of Cu(N2C^j^Hg(OH)2)2^12*2^2®' 0"!? the 

cationic molecule is shown. Thermal ellipsoids 

are scaled to enclose 50% of the electron 

density. 
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Figure 5.6. ALCAMPS generated projection of Cu(N2C^^Hg(0H)2)2 

Clg'ZHgO. Bonds were drawn in by hand. 
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Table 5.21. ALCAMPS Data Table for CufNgCiiHgtOHi^igClg'ZHgO 

Space Group C2/ C  

No. of Symm. Ops 8 

No. of Matches Required 6 

No. of Refis Used 200 

Size of Map X; 64 Y: 64 Z; 

A / Grid X: .227 Y; .191 Z: 

No. of Peaks in Map 1027 

Tolerance, Grids 1.9 

Superposition Vector SX: 39.45 SY: 6.24 SZ: 

No. of Possible Solutions 6 

No. of Solutions Averaged 2 

Solutions 
"l: 63.94 Vl: 63.99 

°2: 14.58 ̂ 2: 13.00 ̂ 2: 

No . of Atoms (total) in Image 27 

No. of Atoms (correct) in Image 18 

of Nonhydrogen Atoms in Structure 19 

229 

8 . 0 0  

31.54 

16.94 

Avg. No. of Matches 12.8 (out of 16) 

Avg. Std. Dev., A 0.08 

Resid. Agreement Factor, % 38.6 

Avg. Deviation in Distances, A 0.16 

Avg. Deviation in angles, ° 6.9 
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Table 5.22. ALCAMPS Atomic Coordinates^ (xlO^) for 
Cu((OH)2)2^12 * 2H2O 

ATOM # PK HT X Y Z # MAT S.D.(A) 

Cu 1 505 0 5000 5000 16 .06 
CI 2 250 1167 1002 6308 16 .06 
N1 11 95 720 4688 6194 16 .10 
N2 9 86 -543 6412 5502 16 .09 
01 8 124 1225 6405 4946 16 .11 
02 14 102 1672 7492 6164 14 .11 
03 6 88 947 8987 3483 14 . 06 
04 7 110 3061 5987 4989 14 .07 
CI 17 96 1217 5703 6416 8 .07 
C3 13 46 1615 4424 7607 6 .04 
C4 12 76 1357 3636 7428 16 .10 
C5 3 87 797 3933 6600 16 .06 
C6 25 47 189 7239 6140 6 .09 
C7 20 109 -59 8001 6293 8 .09 
C8 4 72 -1083 8318 6331 12 .04 
C9 24 56 -1720 7662 6068 8 .13 
CIO 10 75 -1361 6596 5606 14 .06 
Cll 5 91 1114 6704 5971 14 .06 

^ Atomic coordinates are given as fractions of the unit 
cell. 

coordinates along with the peak numbers, peak heights, number 

of matches and the standard deviations for each of the atoms. 

The top 14, and 18 of the top 25, "atoms" were correct. 

Notice that atoms CI, C3, C6, C7 and C9 were present in only 

one image. Averaging the two images has resulted in the 

identification of more correct atoms than were in either 

image. Table 5.23 lists the deviations of the ALCAMPS 

positions from the refined positions which are listed in Table 

8.8. Tables 5.24 and 5.25 show comparisons of the refined and 
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Table 5.23. Fractional Deviations ̂ (xlO*) for 
Cu(N2CiiHg( 0H)2)2Cl2-2H2O 

ATOM X y Z 

Cu 0 0 0 
CI -9 39 -8 
N1 -15 -96 36 
N2 -38 52 -48 
01 -25 44 13 
02 -72 46 5 
03 0 93 9 
04 -15 220 36 
CI -12 56 -38 
C3 -248 -182 -77 
C4 9 -76 50 
C5 8 102 -22 
C6 69 183 240 
C7 66 -45 -9 
C8 -14 26 -16 
C9 -14 91 75 
CIO 47 -13 15 
Cll 1 35 113 

Average deviation -15 32 21 

Average error^ 37 78 45 

^ Deviations are given as fractions of the unit cell. 

^ The error is defined here as the absolute value of the 
deviation. 
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Table 5.24. Comparative bond distances for 
Cu(N^C^iHg(OH)2)2^12'ZH^O 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

Cu - N1 2.01(5)* 2.06 0.05 
Cu - N2 1.99(5) 2.04 0.05 
N1 - CI 1.34(7) 1.47 0.13 
N1 - C5 1.35(8) 1.10 -.25 
C3 - C4 1.40(10) 1.07 -.33 
C4 - C5 1.37(9) 1.49 0.12 
N2 - C6 1.34(7) 1.73 -.29 
N2 - CIO 1.35(7) 1.22 -.13 
C6 - C7 1.40(9) 1.02 -.38 
C7 - C8 1.41(9) 1.54 .13 
C8 - C9 1.37(10) 1.28 -.09 
C9 - CIO 1.39(9) 1.56 .17 
CI - Cll 1.53(8) 1.39 -.14 
C6 - Cll 1.52(8) 1.52 0.00 
Cll- 01 1.42(7) 1.55 0.13 
Cll- 02 1.39(7) 1.29 -.10 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 5.25. Comparative bond angles for 
C u ( ( O H ) 2 ) 2 ^ 1 2 • 2 H 2 O  

ATOMS REFINED(°) ALCAMPS(°) A(°) 

NI - Cu - N2 87.9(2)* 87.4 -.5 
Cu - N1 - CI 116.2(4) 105.7 -10.5 
Cu - N1 - C5 124.3(4) 131.2 6.9 
Cl - N1 - C5 119.4(5) 123.0 3.6 
NI - CI - Cll 113.9(5) 126.2 12.3 
C3 - C4 - C5 118.9(6) 99.4 -19.5 
C4 - C5 - N1 121.8(6) 133.6 11.8 
Cu - N2 - C6 115.8(4) 117.0 1.2 
Cu - N2 - CIO 124.8(4) 125.7 0.9 
C6 - N2 - CIO 119.4(5) 114.4 -5.0 
N2 - C6 — C7 122.6(5) . 115.9 -6.7 
N2 - C6 - Cll 114.9(5) 101.3 -13.6 
C6 - C7 - C8 117.4(6) 125.5 8.1 
C7 — C8 — C9 119.7(6) 121.6 1.9 
C8 - C9 - CIO 119.5(6) 114.2 -5.3 
C9 - ClO- N2 121.4(6) 122.7 1.3 
CI - Cll- C6 109.1(4) 113.1 4.0 
CI - Cll- 01 108.0(4) 103.4 -4.6 
CI - Cll- 02 108.3(4) 119.6 11.3 
C6 - Cll- 01 105.5(4) 111.4 5.9 
C6 - Cll- 02 113.2(5) 101.2 -12.0 
01 - Cll- 02 112.6(4) 108.2 -4.4 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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ALCAMPS bond distances and angles. 

There is an interesting twist to this structure which was 

revealed by ALCAMPS. In this structure, the heavy atom, the 

Cu, lies on a special position: the inversion point at 

(0,0,0), (0,0,1/2) and related positions. In the space group 

C2/C these inversion points are not simultaneously inversion 

points and the intersection of a mirror and a two-fold axis, 

as is true of similar points in some other space groups. This 

is important in this case, because the origin of the Patterson 

map for this space group, and for any monoclinic space group, 

is an inversion point at the intersection of a mirror and a 

two-fold axis. A single superposition, especially one using a 

vector of high multiplicity, will not always completely remove 

this pseudo-symmetry. In this case, evidently, a large amount 

of the pseudo-symmetry remained. 

All of the four "next best" solutions, excluding the Cu 

and CI images, contained distributions of "atoms" which were 

almost identical to the "correct" distribution. They all 

contained an atom equivalent to the Cu as their "origin" atom. 

The positions of the "Cu" atom were: (1) the two fold position 

(0,0,1/4), (2) the two-fold position (0,0.3984,1/4), (3) the 

mirror position (0.3786,0,0.3719) and (4) the two-fold 

position (0,0.1640,1/4), respectively. A large fraction of 

the total number of atom positions generated for each of these 

images had related partners in the averaged Cu and CI ("best") 
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Image. The respective ratios of the number of averagable 

atomic positions to the total number of atoms in each image 

are; (1) 18:23, (2) 8:15, (3) 6:18 and (4) 8:15. 

Clearly, neither the two-fold symmetry, nor, to a lesser 

extent, the mirror symmetry of the Patterson map, were 

completely removed by the superposition. This situation would 

come under the category of Class 3 related solutions, as 

discussed in Section 4.6. Each of these Images could be 

transformed appropriately, with the transformations being 

defined by the respective positions of the "Cu" atoms, and 

averaged with the composite solution. This was not done, 

since the details of programming such manipulations into 

ALCAMPS have not been worked out yet. 

This eventuality, the generation of correct distributions 

of atoms with incorrect origins, is somewhat disconcerting. 

How can one tell which choice of origin is correct? Without 

prior knowledge about the point symmetry of the molecule, what 

makes the choice of an inversion point centered on the Cu atom 

any better than a mirror or a two-fold axis? The obvious 

answer is the residual agreement between the calculated model 

and the observed data (see Section 4.7). An agreement factor, 

R, is calculated and used for this express purpose. In this 

particular case, the Q-function calculations, made during the 

Marker vector analysis stage of the ALCAMPS run (see Section 

4.2), also provided definitive evidence that the ultimately 

refined model is the correct one. 
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The relative overall overlap Integral for the correct 

choice of origin and the corresponding agreement factor were 

100.0 and 0.386, respectively. Corresponding values for the 

other images are as follows; (1) 89.7 and 0.406, (2) 42.98 and 

0.455, (3) 47.51 and 0.442 and (4) 31.7 and 0.594. From these 

data the choice of "best" solution was relatively obvious. 

From the initial model obtained from ALCAMPS, the 

remainder of the structure. Including hydrogens was resolved 

from subsequent electron density map calculations. 

For a more detailed discussion of the chemistry and 

molecular structure of this material, see Section 8.2. 

5.4.2. Evaluation 

These results reveal how Marker vector analysis can 

sometimes generate apparently equivalent distributions of 

atoms that have different (not symmetry-equivalent) origin 

positions and thus different phases for the structure factors. 

ALCAMPS was able to recognize the correct solution by 

collecting and interpreting appropriate statistical data and 

by comparing the agreements between the measured structure 

factors and structure factors calculated from the various 

distributions. All but one of the atoms in the structure were 

easily recognized in the composite image generated by ALCAMPS. 
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5.5. ALCAMPS SOLUTION OF CCIj^Q(SCH2CH20H) 8H2O 

5.5.1. Discussion 

This structure determination is the first really 

challenging one attempted using ALCAMPS. The structure 

crystallizes in the monoclinic space group C2/c. Figure 5.7 

shows the cationic molecule and its correspondingly 

coordinated perchlorate anions and waters of hydration. 

As Table 8.16 (in Appendix A) indicates, the unit cell is 

quite large, giving rise, naturally, to a very complex 

Patterson map, and significantly complicating any attempt at 

solving the structure. 

The molecule lies on a two fold axis which passes through 

atoms Cd2 and Cd5. Figure 5.7 is drawn with this axis 

vertical. The molecule possesses approximate 4 symmetry 

through a point halfway between Cd2 and Cd5, which would 

relate Cdl to Cd3, Cd2 to Cd5, Cd4 to CdS, etc. This near 4 

symmetry is not crystallographic, but does give rise to 

pseudo-symmetry and the overlap of many nearly, but not quite 

equal interatomic vectors in the Patterson and Patterson 

superposition maps. 

Retrospective examination of the atomic coordinates of 

the cadmium atoms as finally determined reveals that the 

y-coordinates of atom pairs Cdl and Cd2, Cd3 and Cd5 and Cd4 

and Cd6, are very nearly equal, with deviations of 

approximately 1.0, 0.1 and 2.3 grid points, respectively. 
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0111 

Figure 5.7. Structure of CdiQtSCHgCHgOH^igtClO^i^'BHgO. 

Carbon and hydrogen atoms are not shown. Thermal 

ellipsoids are scaled to enclose 50% of the 

electron density. The dashed line represents the 

crystallographic two-fold axis through the mole­

cule. Hydrogen bonds are given by thin lines. 
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These deviations are all less than or near to the tolerance 

level used in the ALCAMPS analysis (2.0 grid points). This 

means that in the Patterson map, vectors representing 

interatomic interactions between these pairs of atoms would 

look like Marker vectors, resulting in additional 

pseudo-symmetry relationships within the Patterson and 

Patterson superposition maps. It turns out that there are six 

independent cadmium atoms per molecule. The number of 

"correct" Marker vector relationships between symmetry related 

cadmium atoms is, therefore, already quite large. When the 

accidental relationships (Cdl to Cd2, etc.) are added to 

these, the complications are almost mind boggling. 

All of the above factors lead to the realization that 

standard Patterson analysis of this structure would have been 

very difficult, if not impossible, and that analysis by any 

other means would not have been easy. Cursory visual analysis 

of the Patterson gave one an immediate feeling of futility, in 

that the number of comparisons to be made is enormous. 

Clearly, most if not all of the cadmium atomic positions 

are needed for the phasing ot the reflection data set to be 

even remotely acceptable. This is, of course, because of the 

large amount of electron density from lighter atoms whose 

total contribution is not negligible. The pseudo-symmetry and 

wide distribution of atomic numbers would very likely give 

direct methods techniques considerable difficulty, although 

structure determination was not attempted using this method. 
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A three-dimensional Patterson map with dimensions 128 x 

64 X 64 was calculated as the Fourier transform of the 

averaged diffraction intensities. A vector corresponding, in 

magnitude, to the overlap of approximately four Cd-Cd vectors 

was used for a Patterson superposition. 

Unit cell information and an estimate of the 

stoichiometric composition of the molecule were given to 

ALCAMPS, and five apparently correct images were identified. 

From previous discussions, see Section 2.3.2, a total of eight 

images would have been expected from a superposition based on 

a vector with a multiplicity of four. In practice, the number 

of acceptable solutions will depend on the tolerance and 

"symmetry matching" criteria chosen by the user. This number, 

eight, should be interpreted as the maximum number of complete 

images present in the superposition map after the 

superposition. 

All five images produced by ALCAMPS contained most of the 

cadmium atoms and some of the sulfur and chlorine atoms, but 

the solution chosen as the "best" contained all of the 

cadmium, sulfur and chlorine atoms. Table 5.26 outlines the 

results of this analysis. Tables 5.27 and 5.28 contain the 

atomic positions for the cadmium, sulfur and chlorine atoms as 

determined by ALCAMPS and the fractional differences between 

the respective ALCAMPS and refined positions. The refined 

positions can be found in Table 8.21 (Appendix A). A 

comparison of the bond distances within the Cd-S skeletal 
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Table 5.26. ALCAMPS Data Table for 
Cd^ Q  ( SCHgCHgOH) ( CIO4 ) 4 • BHgO 

Space Group C2/c 

No. of Symm. Ops 8 

No. of Matches Required 8 

Size of Map X: 128 Y: 64 Z: 64 

A / Grid X: .251 Y: .205 Z: .394 

No. of Peaks in Map 6998 

Tolerance, Grids 2.0 

Superposition Vector SX; 15.66 SY; 13.33 SZ: 7.20 

No. of Possible Solutions 5 

No. of Solutions Averaged 1 

Solution U: 57.58 V: 48.98 W: 25.60 

No. of Atoms (total) in Image 16 

No. of Atoms (correct) in Image 16 

No. of Nonhydrogen Atoms in Structure 52 

Avg. Deviation in Distances, A 0.03 

Avg. Deviation in Angles, ° 1.0 
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Table 5.27. ALCAMPS Atomic Coordinates^ (xlO^) for 
Cd^Q(SCHgCHgOH)(ClO^)^•SHgO 

ATOM X Y Z 

Cdl 4012 13325 527 
Cd2 5000 13110 2500 
Cd3 3769 8784 2614 
Cd4 4770 11160 3599 
Cd5 5000 8731 2500 
Cd6 3750 10798 1308 
Cll 3873 6661 9546 
C12 2292 9754 8713 
SI 4684 14322 1553 
S2 4483 11919 352 
S3 3366 12360 642 
S4 4349 11919 2438 
35 4421 9559 3753 
S6 4314 7700 2376 
S7 3260 10139 1727 
S8 4549 10004 1505 

^ Atomic coordinates are given as fractions of the unit 
cell. 
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Table 5.28. Fractional Deviations^ (xio'^) for 
Cd^Q(SCH2CH20H)^g(C10^)^-8H20 

ATOM X Y Z 

Cdl 5 -1 14 
Cd2 0 -39 0 
Cd3 5 4 -2 
Cd4 14 -9 5 
Cd5 0 -61 0 
Cd6 5 -7 1 
Cll -13 -49 -32 
C12 26 52 -14 
SI -6 8 -2 
S2 -3 27 -11 
S3 3 -26 14 
S4 -7 -17 -9 
S5 10 -18 11 
S6 19 -9 24 
S7 0 -29 -18 
SB -12 17 -8 

Average deviation 3 -10 -2 

b Average error 8 23 10 

Deviations are given as fractions of the unit cell. 

The error is defined here as the absolute value of the 
deviation. 
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framework Is presented in Table 5.29. These results are very 

acceptable, even exceptional. The average deviation for a 

Cd-S bond distance, between the ALCAMPS results and the 

refined results, is 0.03 A. This is only on the order of six 

times the standard deviations of the refined distances 

themselves. This result is impressive, especially when one 

considers that the nominal resolution in the map was on the 

order of 0.20 - 0.40 A. The deviations correspond, then, to 

around 0.10 grid point. 

Table 5.29. Comparative bond distances for 
CdigtSCHgCHgOH) ( CIO4 ) ̂ • BHgO 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

Cdl • - SI 2.568(5)* 2.54 -.03 
Cdl -- S2 2.595(4) 2.58 -.02 
Cdl - S3 2.567(4) 2.59 0.02 
Cd2 -- SI 2.491(5) 2.53 0.04 
Cd2 -- S4 2.550(4) 2.54 -.01 
Cd3 • - S5 2.549(4) 2.56 0.01 
Cd3 -- S6 2.578(4) 2.58 0.00 
Cd3 • - S7 2.562(4) 2.55 -.01 
Cd4 -- S2 2.485(4) 2.50 0.01 
Cd4 -- S4 2.576(4) 2.59 0.01 
Cd4 -- S5 2.496(4) 2.52 0.02 
Cd4 -- S8 2.824(4) 2.80 -.02 
Cd5 -- S6 2.507(4) 2.44 -.07 
Cd5 -- S8 2.548(4) 2.62 0.07 
Cd6 -- S3 2.504(4) 2.47 -.03 
Cd6 -- S4 2.767(4) 2.74 -.03 
Cd6 -- S7 2.520(4) 2.51 -.01 
Cd6 -- SB 2.582(4) 2.53 -.05 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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A comparison of (S-Cd-S) bond angles (Table 5.30) reveals a 

similar situation; the average deviation is 1.0°, which is on 

the order of 10a of the refined angles. 

A least squares refinement of the positions of the 

cadmium and sulfur atom positions obtained from ALCAMPS 

resulted in a residual agreement factor of 20.9% - a very good 

start! All of the remaining non-hydrogen atoms, except for a 

couple of the water oxygens, were located in the first 

electron density map calculated from these results. 

For a more detailed discussion of the chemistry and 

molecular structure of this material, see section 8.3. 

5.5.2. Evaluation 

These results show how a very good initial model for the 

structure of this complex molecule was derived automatically 

from the superposition map. The Patterson and superposition 

maps contain a considerable amount of pseudo-symmetry, but 

this was readily overcome by ALCAMPS. The complete skeletal 

framework of the molecule was generated during the analysis. 

Very small errors in the calculated bond distances and angles 

are indicative of how accurate this procedure can be. 
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Table 5.30. Comparative bond angles for 
Cd^Q( SCH2CH2OH) ( CIO4 ) 4• 8H2O 

ATOMS REFINED(°) ALCAMPS(°) A(°) 

SI Cdl - S2 107.1(1) 108.1 1.0 
SI - Cdl - S3 112.8(2) 113.2 0.4 
S2 - Cdl - S3 104.6(1) 104.8 0.2 
SI - Cd2 - SI' 104.1(2) 101.9 -2.2 
SI - Cd2 - S4 118.7(1) 118.2 -0.5 
SI - Cd2 - S4' 106.8(1) 107.7 0.9 
S4 - Cd2 - S4' 102.7(2) 103.9 1.2 
S6 - Cd3 - S7 110.4(1) 110.7 0.3 
S6 - Cd3 - S5 106.4(1) 105.1 -1.3 
S7 - Cd3 - S5 110.4(1) 112.4 2.0 
S2 - Cd4 - S4 124.4(1) 125.1 0.7 
S2 - Cd4 - S5 114.1(1) 114.0 -0.1 
S2 - Cd4 - SB 88.9(1) 90.0 0.1 
S4 - Cd4 - S5 121.6(1) 120.8 -0.8 
S4 - Cd4 - SB 90.7(1) 91.2 0.5 
S5 - Cd4 - SB 89.5(1) 90.2 0.7 
S6 - Cd5 - S6' 110.8(2) 117.2 6.4 
S6 — Cd5 - SB 115.3(1) 115.1 -0.2 
S6 - Cd5 - SB' 105.8(1) 106.5 0.7 
SB - Cd5 - SB' 104.0(2) 100.8 -3.2 
S7 - Cd6 - SB 126.0(1) 126.1 0.1 
S7 - Cd6 - S3 113.2(1) 112.8 -0.4 
S7 - Cd6 - S4 88.2(1) 88.8 0.6 
S8 - Cd6 - S3 120.8(1) 121.2 0.4 
S8 - Cd6 - S4 90.1(1) 90.5 0.4 
S3 - Cd6 - S4 91.3(1) 91.2 -0.1 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 



www.manaraa.com

136 

5.6. ALCAMPS Solution of (NtCHgigCHgfCgHgiigMogClig 

5.6.1. Discussion 

This metallic cluster. Figure 5.8, is composed of a 

nearly square pyramidal arrangement of molybdenum atoms 

bridged on the sides and triangular faces with chlorines, and 

each molybdenum has a bound terminal chlorine atom directed 

radially from the center of the square base. For a tabulation 

of data pertinent to data collection and structure refinement, 

see Table 5.31. The molecule possesses no crystallographic 

symmetry although it has approximate four-fold symmetry 

through its center. The Mo-Mo and Mo-Cl bond distances are 

similar (averages: 2.59 A and 2.45 A, respectively) and 

therefore, most of the bridging Mo-Cl bonds are approximately 

parallel to other bridging bonds or Mo-Mo bonds in the central 

cluster group. These structural anomalies give rise to a 

considerable amount of pseudo-symmetry. Therefore, most of 

the Patterson vectors have very high multiplicities and a 

number of non-Harker intramolecular vectors lie on Marker 

lines or planes. 

The structure determination was initially attempted by a 

graduate student in Dr. McCarley's research group (Department 

of Chemistry, Iowa State University). 

Analysis of the intensity data, in particular zonal 

extinctions, will normally help to determine the space group 

symmetry. In this case, however, the results were very 
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C,>3^ 

CUB 

Figure 5.8. Structure of the MOgCl^g^" cluster in (NCCHg)^-

CH2(CgH5) ) 2^10501^^3. Thermal ellipsoids are 

scaled to enclose 50% of the electron density. 
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Table 5.31. Crystal Data for (N(CH2)2CH2(CgH5) >21^0501^^3 

Formula (Mol. Wt.) 

a, A 

b 

c 

ot, ° 

P 

y  

V, 

z 

Crystal System 

Space Group 

Radiation, x, A 

3 
Crystal size, mm 

Abs. Coeff., \x, cm~^ 

Temperature, K 

20 Range 

No. of Observed Refis 

R (refinement), % 

Rjg (refinement), % 

^05^113^2^20^18 (1241) 

17.863(2) 

35.714(4) 

11.849(1) 

90.00 

90.00 

90.00 

7559(1) 

8 

orthorhombic 

Pcnb 

MoK^, 0.71034 

0.20 X 0.20 X 0.20 

25.6 

298 

0° <= 20 <= 42° 

2691 

5.2 

6.4 
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ambiguous. Table 5.32 contains a list of the zonal extinction 

possibilities allowable in the orthorhombic system and the 

indicated symmetry implied by each extinction condition. The 

correct space group is Pcnb, with extinction conditions 

indicated in Table 5.32 by *s. There are, however, a number 

of apparent violations of these extinctions, due to inaccurate 

measurement of the intensities. (Again these are tabulated in 

Table 5.32.) These apparent exceptions arise when the tail of 

a non-extinct reflection falls in the scanning range of the 

symmetry extinct reflection, during data collection, resulting 

in the retention of an apparently observed reflection. 

Conservative interpretation of these results would lead one to 

the conclusion that the possibilities for the space group 

could be represented by the following; P 2^/(c or m) (2 or 

2^)/(n or m) 2^/(b or m). Clearly, this doesn't narrow it 

down much. 

A Patterson map was calculated and analysed. The map 

contained peaks which could be interpreted as Marker vectors 

in a large number of space groups. No significant reduction 

in the number of possible space groups was realized, from this 

analysis. The structure solution was first attempted using 

direct methods, in the space groups which seemed to be 

consistent with the extinctions derived from Table 5.32. Each 

of the attempts provided only a couple of atomic positions. 

Some of the sets of positions which were thought to be 

reasonably reliable were used to calculate phases, but the 
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Table 5.32. Possible Symmetry Extinctions For 
(N(CH2)3CH2(CgH5))2M05Cl23 

No. Violations/ 
Extinction Condition Symmetry Element No. Reflections 

hOO h=2n+l 2 -Screw Axis 1/10& 
No Condition ^2-Fold Axis 0/10 

Okl k=2n+l b-Glide 79/149 
l=2n+l c-Glide 4/149' 

k+l=2n+l n-Glide 79/149 
No Condition Mirror 0/149 

OkO k=2n+l 2 -Screw Axis 7/27* 
No Condition 2-Fold Axis 0/27 

hOl h=2n+l a-Glide 44/74 
l=2n+l c-Glide 42/74 

h+l=2n+l n-Glide 2/74* 
No Condition Mirror 0/74 

001 l=2n+l 2 -Screw Axis 0/3^ 
No Condition 2-Fold Axis 0/3* 

hkO h=2n+l a-Glide 125/248 
k=2n+l b-Glide 10/248' 

h+k=2n+l n-Glide 127/248 
No Condition Mirror 0/248 

^ Symmetry extinctions required for the space group Pcnb. 

^ Accidental extinction. 

remainder of the structure was not readily recognizable in the 

calculated electron density maps. These attempts were 

eventually given up and the structure was shelved. 

At this point, I stepped in and used some of the 

techniques I had been developing to try to determine the 

symmetry and subsequently to solve the structure. 
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As just described, the space group symmetry was virtually 

unknown. We had been exploring the benefits of calculating 

overlap integrals using structure factors calculated from 

superposition space vector positions as well as from electron 

density positions, and an attempt was made to determine the 

correct symmetry by applying these principles. 

Overlap integrals, Q(s.,^), were calculated, where s 

represented the matrix operators for each type of symmetry 

operation and ? represented the various possible 

translational vectors (Marker vector positions) for each s.. 

The magnitude of Qis,t) is, in theory, directly related to 

the probability of a particular vector, being a Marker 

vector of the type defined by the matrix, s.. 

For example, the symmetry perpendicular to the a-axis 

can be determined by calculating 

Equation 5.1. Q(s,t) = Z E ( -lis) E ( S ) ^  

a 

where N = # of vectors used in the analysis. 

Equation 5.2. E(-îis) = ( Z p. e'Z^lh&'rj , 
j=l ] 1=1 J 

N o-jZ'Z N 7 1/9 
Equation 5.3. E(h) = ( Z p. e^^^* ̂ ])/( 2 p/) , 

3=1 J ]=1 J 
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f-1 0 0 ) 
Equation 5.4. s=1010|, 

I 0 0 1 ; 

_ r 0 0 \ 
Equation 5.5. t = L u , ±1/2, ±1/2 ) , 

and ? being the points on the corresponding Marker lines. 

(See Section 4.2 for more details about these expressions). 

Normally, there will be a number of possible Marker vectors 

for each Marker line, each with its corresponding Q(s,^). 

Tabulation of the Q's for each type of operation, e.g., b-, 

C-, n-glide or mirror in the example above, and comparison of 

their relative magnitudes should result in the favoring of one 

type over the others. 

Table 5.33 is a tabulation of these results for the 

Marker vectors of all types appropriate for the orthorhombic 

system. The apparent (correct) symmetry elements, along with 

the number of indications for each one from the Q-function 

calculations are as follows; (1) 2^-screw axis parallel to a 

(7 out of 11), (2) c-glide perpendicular to Ë, (3 out of 4), 

(3) n-glide perpendicular to Ë (4 out of 7), (4) b-glide 

perpendicular to c (2 out of 3). The possibilities can then 

be represented by P 2-^/c (2 or 2i)/n (2 or 2j^)/b and the 

corresponding noncentrosymmetric subgroups. 

A comparison was made between these results and the 

symmetry extinction indications from Table 5.32. This 
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Table 5.33. Results From Q-Functlon Calculations for 
(N(CH2)2CH2(C6Hg))2MOgCli2 

a) Symmetry Parallel to a-axis (2^ vs. 2 )  

X Y Z HT 0 Indication Solution^ 

32.3 125.1 43.1 148 100 2, 
32.1 8.0 46.5 131 100 2 
0.0 0.0 0.0 212 92 2' 
0.4 32.9 12.8 99 79 2 
32.0 94.0 21.4 90 77 2, 
32.8 97.9 33.8 95 75 2 
31.2 3.1 43.8 110 71 2 
1.4 32.8 34.0 89 71 2' 

32.0 105.0 25.2 79 69 2, (1) 
-0.6 95.1 12.8 110 68 2' 
32.2 27.1 0.6 84 64 2, (2) 

b) Symmetry perpendicular to a-axis (b- vs. c- vs. n- vs. m) 

X Y Z HT 0 Indication Solution 

0.0 0.0 0.0 212 100 m 
27.3 0.0 32.0 147 99 c (1) 
41.9 0.0 32.0 149 97 c (2) 
35.4 0.0 32.8 113 67 c 

c) Symmetry parallel to b-axis (2^ vs. 2) 

X Y Z HT 0 Indication Solution 
0.0 0.0 0.0 212 100 2 
4.1 0.0 23.9 44 83 2 
35.4 0.1 32.8 113 82 2 
3.0 -1.7 10.7 28 78 2 

41.0 64.0 0.8 68 73 2, (1) 
33.2 0.0 55.1 71 71 2' 
28.2 64.1 25.1 67 71 2, (2) 
27.3 0.1 32.0 147 71 2' 
64.0 64.0 55.0 86 70 2. 
64.0 64.0 34.6 86 69 2? 

^ Denotes Marker vector for one of the images resolved by 
ALCAMPS. 
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Table 5.33. (Continued) 

d) Symmetry perpendicular to b-axis (a- vs. c- vs. n- vs. m) 

X Y Z HT 0 Indication Solution 
0.0 0.0 0.0 212 100 m 
0.0 5.0 -0.9 30 87 m 
0.0 5.0 0.9 30 87 m 

31.8 103.0 31.9 84 80 n 
31.9 30.0 31.8 83 79 n 
32.1 41.0 31.6 91 75 n (1) 
32.0 92.0 31.7 90 69 n (2) 

e) symmetry parallel to c-axis (2^ vs. 2) 

X Y Z HT 0 Indication Solution 
2.2 97.0 0.0 111 100 2 
0.0 0.0 0.0 212 90 2 
3.3 36.1 0.0 88 85 2 
6.2 5.0 0.0 111 81 2 
35.4 0.1 32.8 113 74 2, 
41.9 0.0 32.0 149 67 2 ]  
28.7 3.9 32.2 71 62 2j 
58.7 102.9 0.0 77 60 2^ 
31.8 103.0 31.9 84 59 2, 
60.1 41.0 63.9 75 58 2^ (1) 
32.1 41.0 31.6 91 57 2i 
10.5 30.1 0.2 79 57 2^ 
27.3 0.1 32.0 147 56 2, 
8.8 90.9 0.0 72 51 2' (2) 
38.1 30.0 31.7 63 51 2, 

f) Symmetry perpendicular to c-axis (a- vs. b- vs. n- vs. m) 

X Y Z HT 0 Indication Solution 
0. 0 0. 0 0.0 212 100 m 

-0. 1 64. 0 34.6 86 95 b (2) 
0. 0 64. 0 55.0 86 95 b (1) 
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comparison revealed that some of the questionable extinctions, 

e.g., Okl: l=2n+l, h01:h+l=2n+l and Okl:k=2n+l, were more 

definitely indicated using the Q-function calculations. 

From these results, the space group Pcnb was chosen as 

the apparent space group. ALCAMPS was run using this space 

group. The results from this run are tabulated in Table 5.34. 

Figure 5.9 is a direct reproduction of the ALCAMPS-generated 

least squares projection of the average of two molybdenum 

images, which together represent the "best" solution. The 

bonds were hand drawn from the distance and angle information 

2 -
given in the ALCAMPS output. The complete Mo^Cl^^ anion is 

clearly resolved in this figure. 

Since this structure is not discussed in further detail 

in Appendix A, the refined positions for the molybdenum and 

chlorine atoms are given in this section (see Table 5.35). 

The ALCAMPS-generated atomic positions, peak numbers, peak 

heights, number of matches and standard deviations are given 

in Table 5.36, the fractional differences between the ALCAMPS 

and refined positions are given in Table 5.37 and comparisons 

between the refined and ALCAMPS Mo-Mo and Mo-Cl bond distances 

and Mo-Mo-Mo angles are tabulated in Tables 5.38 and 5.39, 

respectively. 

Once again, the errors in bond distances are relatively 

small, on the order of ten times the ESD's of the refined 

atomic positions. 
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Table 5.34. ALCAMPS Data Table for (NtCHgigCHgtCgHgiigMOgClig 

Space Group Penh 

No. of Symm. Ops 8 

No. of Matches Required 5 

No. of Refis Used 200 

Size of Map X: 64 Y: 128 Z: 64 

A / Grid X; 0.28 Y: 0.28 Z: 0.19 

No. of Peaks in Map 3064 

Tolerance, Grids 2.25 

Superposition Vector SX: 2.46 SY: 2.16 SZ: 12.79 

No. of Possible Solutions 2 

No. of Solutions Averaged 2 

Solutions U^: 60.08 V^:105.02 : 57.23 

Ug: 8.82 Vg: 26.95 Ng: 32.63 

No. of Atoms (total) in Image 46 

No. of Atoms (correct) in Image 18 

No. of Nonhydrogen Atoms in Structure 40 

Avg. No. of Matches 6.1 

Avg. Std. Dev., A 0.12 

Resid. Agreement Factor, % 37.2 

Avg. Deviation in Distances, A 0.09 
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Figure 5.9. ALCAMPS generated projection of the MogCl^g 

cluster in (N^CH^)3CH2<C5H5))2Mo5Cli3' 
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Table 5.35. Refined Atomic Coordinates* (xlO^) for 
(N(CH3)3CH2(CgH5))2M05Cl3_ 3  

ATOM X Y Z 

Mol 9177(1)* 3673(1) 9162(1) 
Mo2 10309(1) 4106(1) 9474(1) 
Mo 3 10684(1) 3951(1) 7432(1) 
Mo4 9586(1) 3494(1) 7156(1) 
Mo5 10509(1) 3407(1) 8850(1) 
Cll 10060(3) 3572(1) 10756(4) 
C12 9030(3) 4322(1) 9378(4) 
C13 9388(3) 3006(1) 8600(4) 
C14 8352(3) 3743(1) 7552(4) 
CIS 11563(3) 3849(1) 9051(4) 
C16 10482(3) 4589(1) 8063(4) 
C17 10891(3) 3282(1) 6882(4) 
CIS 9811(3) 4021(1) 5887(4) 
CIS 8175(3) 3469(1) 10386(1) 
Clio 10795(3) 4509(2) 10947(4) 
cm 11736(3) 4131(1) 6245(4) 
C112 9098(3) 3078(2) 5704(4) 
C113 11234(3) 2887(1) 9566(5) 

* Atomic coordinates are given as fractions of the unit 
cell. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 5.36. ALCAMPS Atomic Coordinates^ (xlO^) for 
(N(CH3)3CH2(CgH5))2M05C1 ^ 3  

ATOM # PK HT X Y Z # MAT S.D.(A) 

Mol 3 94 9200 3678 9227 16 .12 
Mo2 5 79 10331 4099 9469 16 .11 
Mo3 2 106 10707 3939 7423 15 .09 
Mo4 4 91 9595 3486 7221 16 .10 
Mo5 1 99 10500 3399 8865 16 .11 
Cll 12 49 10146 3532 10805 12 .15 
C12 18 43 9365 3952 9767 11 .17 
CIS 8 49 9424 3003 8580 12 .07 
C14 21 66 8511 3853 7553 5 .11 
CIS 16 41 11482 3891 9103 11 .09 
C16 15 44 10552 4578 8095 11 .13 
C17 20 37 10897 3389 7143 12 .21 
C18 31 44 9665 4087 5979 6 .10 
C19 10 34 8244 3491 10481 16 .14 
Clio 27 32 10730 4539 10870 11 .16 
cm 13 35 11720 4121 6249 14 .11 
C112 37 23 9126 3104 5556 5 .04 
C113 19 22 11193 2870 9435 14 .10 

^ Atomic coordinates are given as fractions of the unit 
cell. 
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Table 5.37. Fractional Deviations* (xio*) for 
(NtCHglgCHgtCgHgligMOgClig 

ATOM X Y Z 

Mol 23 5 65 
Mo2 22 -7 -5 
Mo3 23 -12 -9 
Mo4 9 -8 65 
Mo 5 -9 -8 15 
Cll 86 -40 49 
CI 2 335 -370 389 
CIS 36 -3 -20 
C14 159 110 1 
CIS -81 42 52 
C16 70 -11 32 
C17 6 107 261 
C18 -146 66 92 
C19 69 22 95 
Clio -65 30 -77 
cm -16 -10 4 
C112 28 26 -148 
C113 -41 -17 -131 

Average deviation 28 -4 40 

Average error^ 68 50 84 

^ Deviations are given as fractions of the unit cell. 

^ The error is defined here as the absolute value of the 
deviation. 
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Table 5.38. Comparative bond distances for 
(N(CH3)3CH2(CgH5))2M05Cli3 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

Mol - Mo2 2.572(2)* 2.54 -0.03 
Mol - Mo 4 2.569(2) 2.57 0.00 
Mol - Mo5 2.590(2) 2.56 -0.03 
Mo 2 - Mo3 2.569(2) 2.58 0.01 
Mo2 - Mo5 2.627(2) 2.62 -0.01 
Mo 3 - Mo4 2.575(2) 2.57 -0.01 
Mo3 - Mo5 2.588(2) 2.60 0.01 
Mo 4 - Mo5 2.617(2) 2.55 -0.07 
Mol - Cil 2.487(5) 2.57 0.08 
Mol - C12 2.428(5) 2.09 -0.34 
Mol - C13 2.505(5) 2.56 0.05 
Mol - C14 2.423(5) 2.52 0.10 
Mol - C19 2.416(5) 2.36 -0.06 
Mo2 - Cil 2.477(5) 2.59 0.11 
Mo2 - C12 2.433(5) 2.37 -0.06 
Mo2 - C15 2.471(5) 2.23 -0.24 
Mo 2 - C16 2.424(5) 2.39 -0.03 
Mo 2 - CllO 2.423(6) 2.40 -0.02 
Mo 3 - C15 2.505(5) 2.43 -0.08 
Mo 3 - C16 2.425(5) 2.43 0.01 
Mo 3 - C17 2.505(5) 2.02 -0.49 
Mo3 - C18 2.428(5) 2.58 0.15 
Mo 3 - cm 2.434(5) 2.37 -0.06 
Mo4 - C13 2.468(5) 2.38 -0.09 
Mo 4 - C14 2.423(5) 2.35 -0.07 
Mo 4 - C17 2.473(5) 2.35 -0.12 
Mo 4 - CIS 2.443(5) 2.60 0.16 
Mo 4 - C112 2.433(6) 2.54 0.11 
Mo5 - Cil 2.470(5) 2.43 -0.04 
Mo5 - C13 2.480(5) 2.41 -0.07 
Mo5 - C15 2.467(5) 2.50 0.03 
Mo 5 - C17 2.470(5) 2.16 -0.31 
Mo5 - C113 2.418(5) 2.39 -0.03 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 5.39. Comparative bond angles for 
(NtCHslgCHgtCgHgilgMOgCli] 

ATOMS REFINED(°) ALCAMPS(°) A(°) 

Mo 2 - Mol - Mo 4 93.39(7)* 92.5 -0.9 
Mo 2 - Mol - Mo5 61.18(6) 61.7 0.5 
Mo4 - Mol - Mo5 60.95(6) 59.6 -1.4 
Mol - Mo 2 - Mo3 86.63(7) 88.3 1.7 
Mol - Mo 2 - Mo 5 59.76(6) 59.6 -0.2 
Mo3 - Mo 2 - Mo 5 59.73(6) 60.1 0.4 
Mo2 - Mo 3 — Mo4 93.30(7) 91.5 -1.8 
Mo2 - Mo3 - Mo5 61.24(6) 60.6 -0.6 
Mo4 - Mo 3 - Mo 5 60.90(6) 59.1 -1.8 
Mol - Mo4 - Mo3 86.97(7) 87.7 0.7 
Mol - Mo4 - Mo5 59.93(6) 60.0 0.1 
Mo3 - Mo 4 — Mo5 59.80(6) 61.1 1.3 
Mol - Mo 5 - Mo2 59.06(6) 58.6 -0.5 
Mol - Mo5 - Mo3 85.85(7) 87.2 1.3 
Mol - Mo5 - Mo4 59.12(6) 60.4 1.3 
Mo2 - Mo 5 - Mo3 59.03(6) 59.2 0.2 
Mo2 - Mo 5 - Mo4 91.03(7) 91.1 0.1 
Mo3 - Mo 5 - Mo4 59.30(6) 59.9 0.6 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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Some of the nominally "incorrect atoms" from the ALCAMPS 

run are likely to be atoms from the organic cation. The peak 

height limit was chosen such that only a few of these atoms 

would appear in the atom list. No additional recognizable 

fragments were found among the unidentified "atoms" in the 

final image. The expectation of this application of ALCAMPS 

was to obtain a refinable (and identifiable) fragment of the 

structure, not necessarily the elucidation of the complete 

structure. By lowering the peak height limit, most of the 

cationic portion of the structure could probably have been 

resolved. 

5.6.2. Evaluation 

We have demonstrated with these results that Patterson 

superposition analysis can be used not only to solve the 

structures of complicated highly symmetrical clusters such as 

this, but also to help determine the correct space group 

symmetry of the structure when it is in question. Figure 5.9 

is a clear illustration of the accuracy of ALCAMPS. The 

considerable ambiguity of the space group symmetry is shown in 

Table 5.32, while Table 5.33 indicates how the correct 

symmetry was inferred from the superposition map. It is, 

finally, very significant that this structure was previously 

unsolvable using direct methods. 
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5.7. ALCAMPS Solution of (ClHgNCgHiQCllgHggClg 

5.7.1. Discussion 

Solution of this structure. Figure 5.10, was attempted a 

number of years ago using direct methods. The attempts failed 

due apparently to the researchers' inability to recognize the 

correct space group symmetry and/or the limited fragments of 

the structure which were produced. A chemical analysis which 

2 -
predicted that the anion present was HgCl^ did not assist in 

these efforts. 

This structure represents our first attempt at a 

centrosymmetric structure determination using ALCAMPS. As 

will be seen, some pseudo-symmetry is usually present in 

single image ALCAMPS solutions of noncentrosymmetric 

structures. This significantly complicates our analysis of 

the results. A solution to this problem will be suggested. 

All preliminary statistical tests indicated that this 

structure crystallizes in a centrosymmetric space group. The 

Patterson map, in fact, appeared to be consistent with the 

centrosymmetric space group Pnma. A weighted superposition 

was carried out using a vector assumed to be an Hg-Cl vector 

(the multiplicity of which would depend on the actual 

stoichiometry, which was essentially unknown at the time the 

superposition was done), and ALCAMPS was run using the space 

group Pnma. This resulted in a solution which was consistent 

with the space group and which contained what appeared to be 
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Figure 5.10. Structure of (ClHgNCgH^^gCl)^HggClg. Thermal ellipsoids 

are scaled to enclose 50% of the electron density. 
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two mercury atoms on mirror planes and two mercury atoms on 

general sites. "Atoms" bound to the mercury atoms on these 

mirrors seemed to be too close to the respective mirror 

planes, as evidenced by "Cl"-Hg-"C1" angles on the order of 

60-65°. Even though the results didn't seem very good at that 

point, the positions of the possible mercury atoms were 

refined using least squares refinement. This resulted in 

minimal improvement of the agreement between observed and 

calculated structure factors and the electron density map 

generated from this refinement produced no useful information. 

The assumption was made, then, that the correct space 

group must be a noncentrosymmetrlc subgroup of Pnma. This 

limits the possibilities to P2^ma, PnZ^a or Pnm2-j^. Inspection 

of the superposition map revealed that the mirror symmetry 

perpendicular to the Ë-axis was very questionable. This was 

evidenced by the lack of corresponding Marker vectors with 

sufficient intensity, other than the origin peak. For this 

reason the space group PnZ^a was thought to be the most likely 

possibility. 

ALCAMPS was run using the space group PnZ^a and two 

"good" solutions, which were clearly related by the 

superposition vector, were obtained. The results of this 

ALCAMPS run are outlined in Table 5.40. A considerable amount 

of pseudo-symmetry was still present in the superposition map 

in the form of a pseudo-mirror defined by the plane (u,0,w). 

This is because the original Patterson had P 2/m 2/m 2/m 
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Table 5.40. ALCAMPS Data Table for (ClHgNCgH^^Cl)gHggCla 

Space Group Pn2^a 

No. of Symm. Ops 4 

No. of Matches Required 3 

No. of Refis Used 200 

Size of Map X: 64 Y: 64 Z: 64 

A / Grid X: .206 Y: .289 Z: .175 

No. of Peaks in Map 923 

Tolerance, Grids 2.00 

Superposition Vector SX: 13.95 SY: 16.99 SZ: 10.00 

No. of Possible Solutions 2 

No. of Solutions Averaged 1 

Solutions U: 46.80 V: 32.00 W: 9.53 

No. of Atoms (total) in Image 54 

No. of Atoms (correct) in Image 14 

No. of Nonhydrogen Atoms in Structure 26 

Avg. No. of Matches 3.5 

Avg. Std. Dev., A .09 

Resid. Agreement Factor, % 58.4 

Avg. Deviation in Distances, A 0.10 

Avg. Deviation in angles, ° 3.2 



www.manaraa.com

158 

symmetry and the symmetry was not completely removed by the 

superposition. The extent of this pseudo-symmetry is 

exemplified by the fact that an apparently "complete" (but 

incorrect) solution was generated with a mirror positioned at 

(u,0,w) (in the space group Pnma). The presence of this 

pseudo-symmetry results in the inclusion of "atoms" which do 

not really belong in the noncentrosymmetric solution (and are 

detrimental to it), but are indistinguishable from the correct 

"atoms". 

There is a way for ALCAMPS to handle this dilemma. The 

pseudo-symmetry in each image is about the "origin" atom. If 

two solutions can be found which are reasonably complete and 

equivalent to one another, and whose transformational 

relationship is known, only correct "atoms" present in both 

images should be averagable. This is because the 

pseudo-symmetry elements (mirrors in this case) would be 

positioned at different positions in electron density space 

and only accidental coincidences would allow "pseudo-atoms" to 

be retained. This structure determination pointed out the 

need for such an addition to ALCAMPS, but while it was being 

developed the "best" un-averaged solution was studied to 

unravel the structure. 

One immediate revelation from an inspection of the 

distance and angle information produced by ALCAMPS was that 

the anionic mercury did not exist in the form of HgCl^^~; bond 

distances and angles expected for this geometry are 
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approximately 2.3 A and 109°, respectively. Instead, what was 

found was the HggClg^" anion, with two mercury atoms each 

bonded to two bridging and two terminal chlorine atoms, in a 

distorted tetrahedral arrangement. Figure 5.11 shows the 

projection into the least squares plane for this result. The 

bonds within the Hg2Clg^ unit are drawn and the anion is 

easily identifiable, while the remaining "atoms" are not 

readily recognizable. Clearly, there must be quite a number 

of incorrect "atoms" present. 

The positions of the two mercury atoms and the six 

chlorine atoms of the anion were refined by least squares 

refinement and the remainder of the structure was revealed in 

subsequent electron density maps. 

The ALCAMPS positions for the anion atoms, along with 

peak numbers, peak heights, numbers or matches and standard 

deviations, are given in Table 5.41 and the deviations of the 

positions from the refined positions are given in Table 5.42. 

Lists of comparative bond distances and angles are compiled in 

Tables 5.43 and 5.44. Once again, the positions for the atoms 

identified seem quite acceptable. The average deviations in 

distances and angles are on the order of ten times the 

respective standard deviations from the refinement. 

For a more detailed discussion of the chemistry and 

molecular structure of this material and the related 

(ClHgNCgH]^2Cl)2H9Cl^(C^H^) "H^O, see section 8.4. 
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Figure 5.11. ALCAMPS generated projection of the Hg^Cl^ anion in 

(ClHgNCgC^QCl)gHggCl^. 
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Table 5.41. ALCAMPS Atomic Coordinates^ (xlO*) for 
( ClHgNCgH^^gCl ) gHggCl^ 

ATOM # PK HT X Y Z # MAT S.D.(A) 

Hgl 5 143 4124 7600 5769 4 .08 
Hg2 1 270 3624 5729 4191 4 .12 
Cll 11 48 4873 7259 7466 4 .05 
C12 28 57 3709 8250 4175 3 .05 
C13 26 31 5173 6617 4201 4 .08 
C14 14 50 2379 6779 5809 4 .08 
CIS 25 39 4108 5096 5851 4 .10 
C16 32 31 2649 6151 2548 3 .04 

® Atomic coordinates are given as fractions of the unit 
cell. 

Table 5.42. Fractional Deviations^ (xlO*) for 
(ClHgNCgH^gCl)gHggClg 

ATOM X Y Z 

Hgl -8 0 19 
Hg2 151 48 -95 
Cll -41 43 -24 
C12 94 -130 -66 
C13 -28 6 -45 
C14 38 -8 -81 
C15 20 64 -26 
C16 13 41 -47 

Average deviation 30 8 -46 

Average error^ 49 43 50 

^ Deviations are given as fractions of the unit cell. 

^ The error is defined here as the absolute value of the 
deviation. 
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Table 5.43. Comparative bond distances for 
( ClHg'NgHj^2Cl ) 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

Hgl - Cll 2.32(1)* 2.23 -.09 
Hgl - CI2 2.33(1) 2.22 -.11 
Hgl - C13 2.86(1) 2.88 0.02 
Hgl - C14 2.80(1) 2.76 -. 03 
Hg2 - C13 2.85(1) 2.62 -. 25 
Hg2 - C14 3.02(1) 3.12 0.09 
Hg2 - CIS 2.30(2) 2.29 0.00 
Hg2 - CIS 2.33(1) 2.38 0.05 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 

Table 5.44. Comparative bond angles for (ClHgNCgHj^2^^) 

ATOMS REFINED(°) ALCAMPS(°) A(°) 

Cll - Hgl - C12 158.8(5) 161.2 2.4 
Cll - Hgl - C13 94.5(4) 97.3 2.8 
Cll - Hgl - C14 102.0(4) 101.5 -0.5 
C12 - Hgl - C13 96.6(4) 88.4 -8.2 
C12 - Hgl - C14 95.1(4) 96.1 1.0 
C13 - Hgl - C14 94.3(3) 93.5 -0.8 
C13 - Hg2 - C15 92.6(5) 95.8 3.2 
C13 - Hg2 - C16 99.2(5) 102.6 3.4 
C14 - Hg2 - C15 96.1(5) 89.7 -6.4 
C14 - Hg2 - C16 88.8(4) 87.7 -1.1 
C15 - Hg2 - C16 167.3(7) 161.5 -5.8 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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5.7.2. Evaluation 

This strucure determination demonstrates an important 

capability of ALCAMPS. Noncentrosymmetric structure can pose 

many complications for any structure solving technique. 

ALCAMPS has been designed to handle the complications that 

arise in Patterson superposition analysis. In particular, 

maps resulting from a single superposition contain pseudo-

symmetry which must be appropriately accounted for. By 

averaging separate images, the pseudosymmetry will normally be 

removed. As discussed above, the details of this process have 

not been completely worked out. In any case, the procedure 

discussed in Section 4.6 should accomplish the desired result. 

The results described in Tables 8.42 - 8.44 indicate that the 

positions of the identifiable atoms are quite accurate. By 

averaging these results with the results from additional 

images, the correct "atoms" should become more prominent in 

the final atom list. 

Finally, it is important to realize that this structure 

was previously unsolvable using alternative methods, and that 

the space group symmetry of the structure was clearly 

determined by ALCAMPS to be acentric even though statistical 

evidence indicated the presence of a center of symmetry. 
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5.8. ALCAMPS Solution of HgAlfPO*)] 

5.8.1. Discussion 

This crystalline material. Figure 5.12, was originally 

indexed as monoclinic. Subsequent inspection of the unit cell 

parameters revealed that the C-centered monoclinic cell could 

be transformed to an R-centered hexagonal cell. The initial 

structure determination (using ALCAMPS) was carried out in the 

monoclinic space group C2/c which is a subgroup of the appar­

ent hexagonal space group R3c. This discussion is included 

here as an example of a structure containing relatively light 

atoms. It also illustrates the process by which a structure 

determination can be made even if the symmetry group used is a 

subgroup of a higher symmetry space group. 

A Patterson map was calculated using the monoclinic 

reflection data set, and a superposition was performed using a 

shift vector with peak height approximately proportional to a 

double Al-P vector. ALCAMPS was run in the space group C2/c 

using the monoclinic unit cell and the assumed stoichiometry. 

The results are tabulated in Table 5.45. Two solutions stood 

out as the most probable; the positions and additional 

statistical data for the better of the two are listed in Table 

5.46. The deviations of these positions from the refined 

monoclinic positions (Table 5.47) are listed in Table 5.48, 

and comparative bond distances and angles are tabulated in 

Tables 5.49 and 5.50. 
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Figure 5.12. Structure of HgAlCPO^lg, not including hydrogen 

atoms. Thermal ellipsoids are scaled to enclose 

50% of the electron density. 
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Table 5.45. ALCAMPS Data Table for H^AltPO^)] 

Space Group C2/c 

No. of Symm. Ops 8 

No. of Matches Required 6 

No. of Refis Used 200 

Size of Map X; 32 Y: 64 Z: 32 

A / Grid X; 0.31 Y: 0.21 Z; 0.26 

No. of Peaks in Map 810 

Tolerance, Grids 1.50 

Superposition Vector SX: 13.38 SY; 58.75 SZ: 21.24 

No. of Possible Solutions 2 

No. of Solutions Averaged 1 

Solutions U; 31.92 V; 11.00 W; 15.97 

No. of Atoms (total) in Image 33 

No. of Atoms (correct) in Image 9 

No. of Nonhydrogen Atoms in Structure 9 

Avg. No. of Matches 7.8 

Avg. Std. Dev., A 0.07 

Resid. Agreement Factor, % 31.0 

Avg. Deviation in Distances, A 0.09 

Avg. Deviation in angles, ° 3.3 
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Table 5.46. ALCAMPS Atomic Coordinates* (xio*) for 
HgAltPO*)] 

ATOM # PK HT X Y 2 # MAT S.D.(A) 

A1 3 288 2500 2500 5000 8 .06 
PI 1 264 0 4140 2500 6 .01 
P2 2 274 9215 8360 9157 8 .02 
01 5 116 6136 1362 9100 8 .10 
02 6 110 6979 7186 2451 8 .08 
03 7 94 9166 8278 5303 8 .08 
04 9 67 5792 152 7056 8 .08 
05 8 66 1395 782 932 8 .08 
06 10 61 5953 7075 9302 8 .14 

^ Atomic coordinates are given as fractions of the unit 
cell. 

Table 5.47. Refined Atomic Coordinates^ (xlO*) for H^AlCPO^ig 

ATOM X Y Z 

A1 2500 2500 . 5000 
PI 0 4138(2) 2500 
P2 9181(2) 8319(1) 9136(2) 
01 6165(6) 1394(4) 9177(7) 
02 6993(6) 7201(4) 2434(6) 
03 9127(6) 8300(40 5236(8) 
04 5898(8) 187(6) 6813(10) 
05 1246(8) 556(5) 1098(11) 
06 6048(9) 7117(10) 9319(11) 

^ Atomic coordinates are given as fractions of the unit 
cell. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 5.48. Fractional Deviations^ (xlO^) for H^AltPO^lg 

ATOM X Y Z 

A1 0 0 0 
PI 0 2 0 
P2 34 41 21 
01 -29 -32 -77 
02 -14 -15 17 
03 39 -22 67 
04 -108 -35 243 
05 149 225 -166 
06 -131 -42 -17 

Average deviation -7 9 12 

Average error^ 56 46 68 

^ Deviations are given as fractions of the unit cell. 

^ The error is defined here as the absolute value of the 
deviation. 

Table 5.49. Comparative bond distances for H^AifPO^)] 

ATOMS REFINED(A) ALCAMPS(A) A(A) 

A1 - 01 1.889(5)* 1.95 0.06 
A1 - 02 1.896(7) 1.99 0.09 
A1 - 03 1.869(6) 1.88 0.01 
PI - 01 1.475(5) 1.41 -.07 
PI - 04 1.588(7) 1.42 -.17 
P2 - 02 1.480(5) 1.46 -.02 
P2 - 03 1.469(6) 1.44 -.03 
P2 - 05 1.581(7) 1.31 -.27 
P2 - 06 1.583(7) 1.52 -.06 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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From examination of the reduced cell scalars for the 

monoclinic unit cell, it became clear that the crystal could 

be reindexed as hexagonal. Table 5.51a shows the monoclinic 

cell parameters, the transformation matrix from monoclinic to 

hexagonal and the hexagonal cell parameters. The higher 

symmetry hexagonal setting is preferred if the structure can 

be refined in that symmetry. The reflection data and 

positional parameters were appropriately transformed in order 

to check this refinability. 

In the monoclinic space group, the aluminum atom was 

positioned at the point (1/4,1/4,1/2), which is an inversion 

center. In the hexagonal space group R3c, the aluminum atom 

should be positioned at a comparable position, (0,0,1/2), 

which is a 3 site. The transformation of the positions (the 

matrix is given in Table 5.51b), however, re-positioned the 

aluminum atom at the position (0.1667,0.3333,0.3333). A 

simple shift of the complete set of transformed atomic 

positions (see Table 5.52), by (-.1667,-.3333,0.1667) , then, 

should return the aluminum to its proper position in the 

hexagonal unit cell. Table 5.53. 

Inspection of the positions in Table 5.53 reveals that 

only one unique phosphorus (PI) and two unique oxygens (01 and 

04) are present. Table 5.54 lists the relationships between 

equivalent atoms and the corresponding deviations. These 

results indicate that refinement in the hexagonal space group 

is merited, since the agreements are quite good. The space 
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TcQjle 5.50. Comparative bond angles for HgAKPO^)^ 

ATOMS REFINED(°) ALCAMPS(O) A(0) 

01 - A1 - 02 88.1(2)* 89.3 1.2 
01 - A1 - 02' 91.9(2) 90.7 -1.2 
01 - A1 - 03 91.9(2) 90.7 -1.2 
01 - A1 - 03' 88.1(2) 89.4 1.2 
02 - A1 - 03 88.3(2) 89.1 0.8 
02 - A1 - 03' 91.7(2) 90.9 — 0.8 
01 - PI - 04 109.6(3) 107.9 -1.7 
02 - P2 - 03 120.8(3) 119.5 -1.3 
02 - P2 - 05 108.7(3) 106.0 -2.7 
02 - P2 - 06. 104.0(4) 101.5 -2.5 
03 - P2 - 05 104.1(3) 120.1 16.0 
03 - P2 - 06 109.9(3) 107.7 -2.2 
05 - P2 - 06 109.1(4) 98.3 -10.8 

* Estimated standard deviations for the refined angles 
are given in paretheses for the least significant digit. 

Table 5.51. Crystallographic Data for Monoclinic and 
Hexagonal Unit Cells for HgAltPO^)] 

a) Monoclinic Cell; a=9.997, b=13.716, c=8.484A, 9=121.42° 

Transformation Matrix: 

r a 1 ( 1/2 1/2 - 1  )  ( I f ,  \  
I I I I I I 
I b„ I = 1 -1/2 1/2 1 I I bw I 
I I I I I ^ I 
I ; I 1 0 1 ; I c^ ; 

Hexagonal Cell: a=b=13.690, c=9.133 

b) r Xo ^ r 1/3 1 -1/3 W Xw ^ 
I I I  I I I  
I Yj, I = I -1/3 1 1/3 II Yw I 
I I I  I I I  
I J I 2/3 0 1/3 ; I 2% ; 



www.manaraa.com

171 

Table 5.52. Transformed Monocllnlc Coordinates* (xlO*) for 
HsAltPO*)] 

ATOM X Y Z 

A1 1667 3333 3333 
PI 3307 4973 833 
P2 8379 8341 9196 
01 374 2350 7124 
02 8695 5677 5470 
03 9565 6990 7878 
04 9731 573 6213 
05 936 628 1241 
06 5958 8191 7068 

* Atomic coordinates are given as fractions of the unit 
cell. 

Table 5.53. Hexagonal Coordinates* (xlO^) for 
HeAlCPO*), 

ATOM X Y Z 

A1 0 0 5000 
PI 1640 1640 2500 
P2 6712 5008 863 
01 8707 9017 8791 
02 7028 2344 7137 
03 7898 3657 9545 
04 8064 7240 7880 
05 9269 7295 2908 
06 4291 4858 8735 

* Atomic coordinates are given as fractions of the unit 
cell. 
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Table 5.54. Relationships Between Transformed Monoclinic 
Atomic Positions for HgAKPO^)^ 

Atom Transformation X Y Z 

PI X,Y,Z .1640 .1640 .2500 
P2 l/3+(Y-X),2/3+Y,7/6+Z .1629 .1675 .2530 

01 X,Y,Z .8707 .9017 .8791 
02 l/3+(Y-X),2/3+Y,7/6+Z .8649 .9011 .8804 
03 2/3-Xrl/3+(Y-X),5/6-Z .8769 .9092 .8788 

04 X,Y,Z .8064 .7240 .7880 
05 Y-X,Y,l/2+Z .8026 .7295 .7908 
06 l/3+Y,2/3+(Y-X),2/3-Z .8191 .7234 .7932 

group R3c 

proceeded 

was finally settled on 

from there. 

and the ref inement 

This type of procedure can be followed any time the full 

symmetry of the crystal is either not known or not fully 

conf irmed. 

5.8.2. Evaluation 

This structure determination represents another important 

capability of ALCAMPS. Very often there is considerable 

question about the space group symmetry of the structure under 

investigation. In this case, the hexagonal symmetry was 

somewhat questionable and the structure was solved in the 

monoclinic subgroup. Inspection of the results revealed that 

the monoclinic positions could be transformed to fit the 

hexagona1 symmet ry. 
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5.9. Structures Solved by ALCAMPS 

The following is a list of structures which have been 

successfully solved in this laboratory, using ALCAMPS. Some 

of these structures were solved by this technique either after 

they were already solved by other techniques or while the 

structure determination was being attempted by other means. 

On the other hand, a number of these structures were 

previously unsolvable by any other available techniques. 

Noticably absent are purely organic structures. This is not 

because organic structures can not be solved using this 

technique, but because some of the necessary adaptations 

needed for such structures have not yet been successfully 

implemented by ALCAMPS. 

Formula Space Group 

1) CdiotSCHgCHgOHiigtClO^i^'BHgO C2/c 

2) (NtCHglgCHgtCgHgllgMOgCl^g Pcnb 

3) HgAlfPO^)] C2/ C  

4) Cu(N2CiiHg(0H)2)2Cl2'4H20 C2/c 

5) (CHgigNPtOCHglgCtCHglg PÏ 

6) CH2(CH2CH2)2NP(0CH2)2C(CH3)2 Pbna 

7) Fe(CS)(CO)2(CgHgPFg C2/c 

8) ((CgHioNCl)HgCl)2Hg2Clg Pn2j^a 
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9) ((CgHigNCliHgCligHgCl* C2/c 

10) Fe(CO)(C5H5)Fe(co)3(P02C6H12)2(CH2C12) Pi 

11) InMo^Og P4/mbm 

12) ^gMo-j^g032 C2/m 

13) CoFe2(C0)g(CgHg)2(SCCH3) P2^/c 

14) (Reg ygReg zsiBraNfCHgCHgCHgCHg)* PZ^/n 

15) CzoH^Cl^I^Os'CaHgOz PÎ 

16) Fe(CO)(C5H5)(CS2SCH3) PÎ 
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6. CONCLUSION 

It is my hope that the results presented in Section 5 

successfully demonstrate the significance of our contribution 

to the theory and application, of Patterson superpositions. In 

particular, I think that we have developed a very viable 

alternative.to existing automatic phase determining 

techniques. These results show, for one thing, that the 

requirements set down at the beginning of Section.,5 have been 

met successfully. ALCAMPS provides complete structure 

solutions directly (and automatically) using only Patterson or 

superposition maps. Although some of the structures discussed 

could have been solved using more standard methods, others 

were not previously solvable by any alternative method. No 

organic structures determinations are reported here. We have 

full confidence, however, that ALCAMPS will be able to handle 

these types of structures. By combining the information from 

many images, the correct atomic positions can be distinguished 

from the incorrect ones. A number of the structures solved 

contain many heavy atoms which significantly complicate the 

Marker vector analysis, by producing complex patterns in the 

Patterson and superposition maps. ALCAMPS has a demonstrated 

ability to extract correct structures from these complicated 

interatomic distributions. 

There are some additional aspects of Patterson 

superposition analysis which were not directly addressed in 
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Section 5. These deal primarily with the relationship between 

this method and direct methods. 

In recent years, there has been a growing need for a 

powerful alternative (or aid) to the direct methods approach 

to phase determination. ALCAMPS now represents such an 

alternative. It was mentioned several times in Section 5 that 

direct methods failed to solve particular structures. 

Usually, when direct methods fail it is because they have been 

unable to generate enough phase relationships to produce 

statistically significant results. The relatively 

inexperienced direct methods user has a considerable dilemma 

when the first attempt fails. Often there are no obvious 

changes to make either in the starting reflection set or in 

the initially assigned phases for the starting reflections. 

In addition, direct methods are susceptible to poor data. 

They rely very heavily on higher angle data, which have 

relatively large E(îî) magnitudes, but are often less 

reliably measured. In fact, some poorly diffracting crystals 

provide practically no high angle information at all. A few 

badly measured reflections can significantly alter the 

results. In extreme cases, there is very little that can be 

done. 

Patterson-based techniques don't have these problems. 

The averaging effect of the Fourier transformation reduces the 

importance of individual reflections. Depending on the 

resolution or amount of information desired, (or needed), a 
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very poor set of data can be used to obtain the structure 

solution. Furthermore, if ALCAMPS fails the first time, there 

is a large number of other starting points, i.e., different 

superposition shift vectors. The past limitations on 

Patterson-based techniques have been related mainly to the 

accuracy of the peak positions and heights used in the 

analysis. ALCAMPS uses relatively accurate postions and 

improves their accuracy by averaging symmetry-equivalent 

peaks. The statistical data accumulated by ALCAMPS serve to 

reduce the chance of picking an incorrect solution from its 

list of possibilities. 

Occasionally a solution is generated by ALCAMPS which is 

thought to contain not only the atoms desired, but also many 

more. In such a situation, a second superposition vector can 

be chosen from inspection of the atom list. This second 

superposition should further reduce the number of images and 

thus the number of incorrect atoms. 

In conclusion and in short, the results presented here 

show that ALCAMPS already represents one of the more powerful 

and flexible tools available to the crystallographer, and with 

continued development shall become more so. 
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7. IDEAS FOR FUTURE WORK 

It should be realized that ÀLCAMPS is still in its 

developmental stages. As a result, there are a number of 

capabilities it should eventually have that are not yet 

completely realized. A brief discussion of these will be 

presented here. The results discussed in this dissertation 

show that ALCAMPS can solve many types of structures on a 

routine basis. There will undoubtedly be structures which 

will still resist efforts at structure determination using 

this procedure. It would be to our benefit, then, to explore 

just how far Patterson superposition analysis can go. This 

might best be explored by deciding what the weak aspects of 

the analysis are and how they might be overcome. 

Many structures which seem to be unsolvable have 

questionable space group symmetry. Patterson and, to a lesser 

extent, superposition maps possess extra symmetry which often 

makes difficult the elucidation of questionable symmetry. In 

addition, these maps often contain some peaks which could fit 

almost any symmetry one could devise. The structure of 

(ClHgNCgH^oCllgHggClg, discussed in Section 5.7, is an 

illustration of how the superposition map had a sufficient 

number of peaks which fit the centrosymmetric space group 

symmetry to warrant attempted refinement in that space group. 

One of the encouraging and somewhat surprising results of our 
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experimentation with Q-functions is that they can provide very 

useful information about space group symmetry. These 

calculations could readily be taken to the extreme by letting 

ALCAMPS choose the space group on its own, within certain 

bounds, when the symmetry was in question. A process similar 

to that used to determine the space group for the structure of 

(NfCHgigCHgtCgHgiigMogCl^g could be carried out automatically, 

resulting in the accumulation of a list of possible space 

groups. The Marker vector analysis and image generation could 

be done using the space groups considered to be most probable, 

based on the Q-function calculations and whatever other useful 

data could be supplied by the user. 

Intuitively, it would appear that the Q-function 

calculations would be most accurate when applied to 

superposition maps resulting from the use of shift vectors 

with relatively low multiplicities, because there are only a 

few images involved. We have seen, however, that very 

accurate atomic positions can be obtained from maps where 

shift vectors with high multiplicities are used. In fact, 

many of the structures discussed in Section 4 were solved with 

maps generated from a superposition using the largest 

non-Harker vector in the list. Further experimentation with a 

variety of multiplicities might reveal which give the best 

results under various conditions. 

There are times when the majority of the atoms generated 

by ALCAMPS seem to be correct, but the stereochemistry is not 
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clear because some important atoms are missing. In situations 

like this, the phases are probably reasonably accurate. The 

structure could, therefore, be solved by refining these phases 

(by Tangent Formula refinement, for instance) and calculating 

the electron density using these refined phases. As mentioned 

in Section 6, direct methods often fail because an 

unacceptable set of starting reflections is used. This 

usually results in there being too small a number of phase 

predictions for other reflections, for reliable refinement. 

Such a circumstance can be completely avoided if a complete 

set of reasonably good phases is available from ALCAMPS. This 

phase refinement could be incorporated in the ALCAMPS 

procedure (to be applied when deemed appropriate by the 

program), or used as a separate program. 

A very important aspect of the ALCAMPS procedure is its 

ability to resolve and combine many images of the structure. 

With continued effort using Q-function calculations as well as 

some of the other methods mentioned in Section 4.6, the 

relationships between noncentrosymmetric images should be 

obtainable, thus overcoming the pseudo-symmetry which is often 

the major obstacle to correct solution of these types of 

structures. 

Finally, the success and accuracy of ALCAMPS is 

integrally related to the accuracy of the peak picking. As 

the results in Section 5 show, ALCAMPS works with reasonably 

accurately resolved peaks. It might be useful, however, to 



www.manaraa.com

181 

devise a more sophisticated method for resolving the 

overlapping three-dimensional peaks which are present in 

Patterson maps. If a complete set of Patterson peaks can be 

made available, a "digital" superposition could be performed, 

thereby reducing the distortions inherent in the "analog" 

superpositions now performed. Finding the accurate positions 

of all of the peaks in Patterson maps would involve fitting 

the map intensities to rather complicated linear combinations 

of Gaussian (or other appropriate) functions, but the 

resulting improvements in the atomic positions might well be 

worth the effort. 
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8. APPENDIX A. CRYSTAL STRUCTURE DETERMINATIONS 

Since the major objective of this research has involved 

the solving of crystal structures, it is appropriate to 

include a reasonably detailed discussion of the data 

collection, structure solution and interpretation of some 

representative structures. This section will describe in some 

detail six crystal structure determinations. Special emphasis 

will be placed on the structural features of the materials, 

although some experimental features will be highlighted as 

well. 

Low temperature X-ray diffraction data were collected for 

one of these structures, using the apparatus described in 

Section 12. In this case, this was done in an attempt to 

reduce the thermal and positional disordering of a highly 

symmetrical anionic group in the structure. The results will 

show that the anticipated disordering was significantly 

reduced. 

Most of these structures contain very unusual (and 

complex) molecular or metallic cluster units. In cases where 

similar compounds exist and have been characterized, however, 

comparisons of the bonding characteristics of each will be 

made. 
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8.1. Structure Determination of 

W3(CCH2C(CH3)3)03Cr3(H20)3(02CC(CH3)3)^2l 

8.1.1. Introduction 

This rather interesting molecular cluster was prepared in 

Dr. McCarley's research group (Department of Chemistry, Iowa 

State University), from the reaction of W(CO)g and CrfCO)^ 

with pivalic acid, in a 1:1:2 ratio. Crystals of the neutral 

molecule have previously been studied and its molecular 

structure is known. The crystal structure determination of 

this oxidized compound was undertaken to identify any changes 

in the metal-metal bonding character of the central cluster 

upon removal of one electron. It was suggested that the 

electron would have anti-bonding character, but our results do 

not support this argument. 

8.1.2. Collection and reduction of X-rav data 

A single crystal with approximate size 0.46 x 0.40 x 0.30 

mm was adhered to a glass fiber and mounted on a goniometer 

head. Data were collected at room temperature, using 

monochromatic MoK^^ radiation, on a four-circle diffractometer 

designed and built at Ames Laboratory.^® Four w-oscillation 

photographs were taken at x = 0° and $ settings of 0, 30, 60 

and 90°. From these photographs, the settings for 13 

reflections were obtained and input into the automatic 

"79 
indexing routine BLIND. The resulting reduced cell and 
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reduced cell scalars revealed primitive monoclinic symmetry. 

Improved unit cell parameters were obtained from the tuned 

angles of four standard reflections with 20 values in the 

range 24° <= 2© < = 26°. Data were collected from the h,k,l 

and -h,-Jc,l octants. The intensities of the four standard 

reflections were measured every 75 reflections during data 

collection to monitor decay. Significant decay was observed 

(~34%). The final unit cell parameters and standard 

deviations were calculated from the tuned angles for 11 higher 

angle reflections (21° <= 2© <= 27°). The systematic absences 

hOl: h=2n+l and OkO: k=2n+l along with statistical evidence 

for centricity^^ uniquely define the space group as the 

centrosymmetric group P2^/a. A decay correction was made 

based on the observed decrease in the intensities of the 

standard reflections. All data were corrected for Lorentz and 

polarization effects and appropriately averaged. All 

pertinent information relative to the unit cell and data 

collection is compiled in Table 8.1. 

8.1.3. Solution and refinement of structure 

As described in Chapter 5, the positions of the tungsten 

atoms were obtained directly from the Patterson map. These 

positions were refined using a least-squares refinement 

31 
procedure , and the remainder of the structure was gradually 

32 
built up from analysis of subsequent electron density maps. 

The positions of all nonhydrogen atoms were allowed to vary 
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Table 8.1. Crystal Data for 
W3(CCH2C(CH3)3)03Cr3(H20)3(02CC(CH3)3)]^2^ 

Formula (Mol. Wt.) 

a, A 

b 

c 

a, o 

P 

y 

V, 

z 
Crystal System 

Space Group 

Radiation, x, A 

Pcalc'd' 

Crystal size, mm" 

-1 Abs. Coeff., \ x ,  cm 

Temperature, K 

2© Range 

No. of Refis Collected 

No. of Observed Refis 

No. of Variables 

R (averaging), % 

R ( refinement), % 

Rpg (refinement), % 

WsICrsOsoCeeHlig <2168.2) 

21.479(11) 

29.125(7) 

15.451(13) 

90.0 

100.97(8) 

90.0 

9489.1 

4 

monoclinic 

P2j^/a 

Mo, 0.71034 

1.52 

0.46 X 0.40 X 0.30 

46.88 

298 

Oo < = 2© < = 42o 

11699 

7399 

988 

4.5% 

9.1 

12.0 
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along with the anisotropic thermal parameters for all 

tungstenO), iodine(l), chromiumO) and oxygenOl) atoms. Of 

the carbon atoms, 56 were refined anisotropically and the 

remaining 9 carbon atoms were refined isotropically. The 

positions of the two ethylenic hydrogen atoms on carbon C65 

were calculated using a nominal value for the C-H bond 

distances of 1.05 A and H-C-H bond angle of 109.54°. These 

atoms were included to help resolve the electron density 

around C66. The positions of these hydrogens were held fixed. 

The conventional agreement factor after full matrix refinement 

converged to a value of R = 9.1%. 

The atomic scattering factors for tungsten, iodine and 

chromium were modified for anomalous dispersion effects.^* 

Table 8.2 lists the refined positional parameters and 

Table 8.3 contains the thermal parameters of all 103 

non-hydrogen atoms and the two hydrogen atoms. 

8.1.4. Discussion of structure 

This oxidized molecular cluster has a very unusual 

arrangement of atoms. The central tungsten atoms are bound to 

one another in an unusual triangular cluster. Figure 5.1 (in 

Section 5.1) shows a projection onto the plane containing this 

triangular unit. The tungsten atoms are indirectly 

coordinated to the chromium atoms through triply bridging 

oxygen atoms (02,03 and 04), which bridge over the edges of 

the triangle. A triply bridging carbon atom (C66) sits over 
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Table 8.2. Refined Atomic Coordinates^ (xlO^) for 
li^^(CCH2C(CH^)^)0^Cr^(H20)^(02CC(CHj)^)j^^I 

ATOM X Y Z 

W1 2710(1)* 8800(0) 1203(1) 
W2 3635(1) 1451(0) 1833(1) 
W3 3093(6) 953(0) 2926(1) 
I 1652(1) 2153(1) 2137(2) 
Crl 2608(3) 1852(2) -127(4) 
Cr2 1508(2) 628(2) 2477(3) 
Cr3 3659(3) 2056(2) 3795(4) 
C66 3591(12) 747(9) 1963(16) 
02 2840(8) 1522(5) 988(10) 
03 2255(7) 944(5) 2186(9) 
04 3304(8) 1598(6) 2879(10) 
05 2439(9) 185(6) 1125(12) 
06 3000(8) 711(6) 80(11) 
07 1819(9) 942(6) 301(12) 
08 3831(10) 2167(6) 1740(14) 
09 4064(10) 1443(6) 753(15) 
010 4521(10) 1434(7) 2538(12) 
Oil 2612(9) 1062(6) 4022(10) 
012 3037(9) 288(6) 3272(12) 
013 3849(9) 911(6) 3947(12) 
014 2477(11) 2406(7) 570(15) 
015 2712(12) 1307(6) -851(13) 
016 2375(12) 2200(7) -1203(12) 
017 1728(10) 1681(6) -159(14) 
018 3529(12) 1977(7) -143(15) 
019 1568(9) 1012(7) 3513(13) 
020 1478(9) 174(7) 1469(12) 
021 982(9) 1092(7) 1768(13) 
022 772(9) 344(7) 2758(12) 
023 2018(11) 150(7) 3209(12) 
024 4547(11) 1940(8) 3596(15) 
025 3812(10) 1575(6) 4688(12) 
026 2773(10) 2200(7) 3985(14) 
027 4002(10) 2495(7) 4678(14) 
028 3567(12) 2530(7) 2900(14) 

^ Atomic coordinates are given as fractions of the unit 
cell. 

Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 8.2. (Continued) 

ATOM X Y Z 

029 1988(21) 2823(11) -780(19) 
030 -8(13) 795(10) 2176(22) 
031 3194(11) 2870(9) 4977(19) 
Cl 1907(14) 9(10) 1169(17) 
C2 2875(13) 900(100 -673(16) 
C3 1480(16) 1285(10) -120(18) 
C4 3771(18) 2515(9) 2151(24) 
C5 4061(20) 1751(11) 186(30) 
C6 4810(17) 1675(11) 3115(20) 
C7 2041(14) 1145(11) 4094(20) 
C8 2622(14) 43(9) 3464(20) 
C9 3974(12) 1166(11) 4536(20) 
CIO 2093(24) 2615(14) -1394(23) 
Cll 220(14) 478(10) 2671(23) 
C12 3772(18) 2783(11) 5086(23) 
C13 1772(16) -478(12) 725(23) 
C14 2386(20) -703(13) 652(35) 
CIS 1475(26) -724(17) 1394(34) 
C16 1282(26) -434(16) -78(31) 
C17 2929(16) 594(11) -1499(21) 
C18 2823(49) 822(21) -2306(34) 
C19 3473(23) 270(15) -1269(32) 
C20 2397(27) 266(29) -1511(51) 
C21 821(16) 1184(12) -611(21) 
C22 820(19) 1256(13) -1594(20) 
C23 588(18) 718(12) -397(20) 
C24 412(21) 1571(16) -280(29) 
C25 3917(12) 3016(8) 1865(25) 
C26 3976(33) 3016(15) 882(34) 
C27 3406(31) 3356(13) 2055(33) 
C28 4518(19) 3118(13) 2335(36) 
C29 4571(18) 1802(15) -419(29) 
C30 4404(32) 2157(34) -1070(47) 
C31 4863(25) 1332(17) -486(38) 
C32 5104(24) 2070(26) 187(45) 
C33 5567(17) 1697(12) 3332(29) 
C34 750(21) 3243(19) 2420(32) 
C35 760(16) 3834(16) 3670(36) 
C36 804(20) 2919(21) 3996(39) 
C37 1874(17) 1301(13) 4962(20) 
C38 2474(17) 1447(14) 5596(21) 
C39 1386(21) 1722(13) 4695(26) 
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Table 8.2. (Continued) 

ATOM X Y Z 

C40 1567(20) 902(15) 5378(23) 
C41 2756(18) -361(11) 4046(23) 
C42 3312(27) -631(17) 3794(43) 
C43 2188(21) -693(18) 3965(49) 
C44 2857(41) -199(18) 4982(32) 
C45 4396(17) 968(13) 5439(25) 
C46 4778(21) 544(16) 5291(26) 
C47 4894(28) 1353(19) 5861(38) 
C48 4038(22) 885(22) 6117(34) 
C61 4111(23) 331(13) 2125(35) 
C62 4529(21) 150(14) 1699(36) 
C63 4668(26) 435(18) 989(30) 
C64 4919(22) -218(17) 2077(41) 
065 3940(34) -200(21) 1060(48) 
C71 1918(35) 2757(15) -2349(25) 
C72 1689(28) 2336(20) -2854(37) 
C73 1707(38) 3239(27) -2377(50) 
C74 2447(47) 2713(34) -2749(60) 
cai -213(14) 196(11) 3141(23) 
C82 -319(23) 495(16) 3925(31) 
C83 -870(27) 151(20) 2624(38) 
C84 72(22) -261(16) 3468(30) 
C91 4269(31) 3099(19) 5686(36) 
C92 3868(31) 3431(21) 6190(41) 
C93 4255(44) 2845(32) 6581(59) 
C94 4819(36) 3138(25) 5487(47) 
HI 3843 68 2361 
H2 4415 463 2776 



www.manaraa.com

190 

Table 8.3. Anisotropic Thermal Parameters^ (xlO^) for 

W3 ()2) 3(H2O)2(O2CC(CH3)3)121 

ATOM Gil B-Î-1 Boo 
X J. i. J J J.XJ  X J 6 J  

W1 36(1)* 17(0) 65(1) 2(0) 11(0) 1(0) 
W2 39(0) 17(0) 82(1) -1(0) 14(1) 1(0) 
W3 35(0) 16(0) 69(1) 2(0) 10(0) 2(0) 
I 61(1) 25(1) 111(2) 8(1) 18(1) 2(1) 
Crl 57(2) 19(1) 81(3) 3(1) 15(2) 6(1) 
Cr2 35(2) 18(1) 71(3) 3(1) 7(2) 4(1) 
Cr3 45(2) 18(1) 95(3) 1(1) 12(2) 4(1) 
C66 25(7) 18(4) 62(15) 2(4) 3(8) 5(6) 
02 39(6) 8(2) 64(10) 2(3) 14(6) 18(4) 
03 25(5) 19(3) 29(7) -1(3) -2(4) -3(3) 
04 34(6) 20(3) 49(9) -5(3) 9(6) -5(4) 
05 41(6) 15(3) 77(11) 2(3) 17(7) -1(4) 
06 34(6) 20(3) 56(10) -1(3) 4(6) 5(4) 
07 41(6) 17(3) 78(11) 10(3) 16(7) 4(5) 
08 55(8) 16(3) 104(14) 3(4) 28(9) -1(5) 
09 48(7) 12(2) 119(15) 0(3) 30(9) -2(5) 
010 41(7) 25(4) 66(11) -3(4) -6(7) -6(5) 
Oil 43(6) 20(3) 41(9) 0(3) 8(6) 0(4) 
012 44(7) 16(3) 78(12) 2(3) 5(7) 9(5) 
013 36(6) 14(2) 70(11) 2(3) -5(6) -4(4) 
014 60(9) 18(3) 100(14) 2(4) 11(9) -9(5) 
015 77(10) 11(3) 86(13) 7(4) 21(9) 16(5) 
016 80(10) 23(4) 56(11) -7(5) 23(9) 3(5) 
017 54(8) 15(3) 93(13) 2(4) 14(8) 11(5) 
018 67(9) 21(4) 96(15) -1(4) 23(10) 7(6) 
019 34(6) 23(3) 88(13) 2(4) 6(7) -4(5) 
020 40(7) 23(3) 65(11) 3(4) -5(7) 0(5) 
021 33(6) 23(3) 83(12) 7(3) 15(7) 12(5) 
022 35(6) 27(4) 71(11) 6(4) 12(7) 2(5) 
023 63(8) 20(3) 61(11) 6(4) 18(8) 14(5) 
024 46(8) 32(4) 100(14) -6(5) 21(9) -22(6) 
025 60(8) 15(3) 73(11) 11(4) 8(8) 7(5) 
026 43(7) 21(3) 112(15) 3(4) 37(9) 5(6) 
027 47(8) 22(3) 95(14) 7(4) 2(8) -10(5) 

^ The form of the anisotropic thermal factor is 

exp[-(p^ih2+P22k2+p33l2+2pi2hk+2Pi3hl+2P23kl)]' 

* Estimated standard deviations for the thermal 
parameters are given in parentheses for the least significant 
digit. 
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Table 8.3. (Continued) 

ATOM Pl3 .... ê.23— ^11 J J j. 4, ê.23— 

028 73(10) 19(3) 91(14) 0(4) 18(10) 3(5) 
029 163(23) 37(6) 98(19) 28(10) 11(16) 9(9) 
030 46(9) 46(7) 204(28) 22(6) 29(13) 55(11) 
031 43(8) 42(6) 163(22) 3(5) 30(11) -46(9) 
Cl 35(9) 26(5) 58(15) 13(6) 23(10) 6(7) 
C2 33(9) 26(5) 40(13) -6(5) 13(9) 9(7) 
C3 61(13) 20(5) 56(16) 11(6) 15(12) 3(7) 
C4 67(14) 12(4) 117(25) 1(6) 27(15) -5(8) 
C5 72(16) 12(5) 188(37) 15(7) 33(20) -5(11) 
C6 58(13) 24(6) 67(19) 7(7) 12(12) 3(8) 
C7 32(10) 26(6) 75(19) 1(6) -12(11) 3(8) 
C8 31(9) 13(4) 95(19) 13(5) -18(11) 9(7) 
C9 15(7) 26(6) 95(20) -6(5) -10(10) 0(9) 
CIO 117(24) 28(7) 69(21) 7(10) -2(18) 15(10) 
Cll 36(10) 21(5) 126(24) -7(6) 50(13) -11(9) 
C12 61(15) 22(6) 107(23) 11(7) 26(15) -16(9) 
C13 58(13) 27(6) 101(23) -11(7) 53(15) -7(10) 
C14 52(15) 29(7) 24(48) -12(8) 47(22) -58(16) 
CIS 92(23) 36(10) 159(39) -4(12) 11(24) -26(16) 
C16 111(26) 32(9) 137(34) 3(12) -63(24) -28(14) 
C17 47(12) 22(5) 83(20) 3(6) 20(13) -12(8) 
C18 294(76) 55(15) 123(36) 53(27) 145(47) 37(19) 
C19 89(20) 31(8) 152(36) 9(10) 32(22) -20(14) 
C20 70(21) 101(26) 313(78) 2(18) 45(34) -124(39) 
C21 48(12) 26(60) 80(20) 1(7) -26(12) -4(9) 
C22 76(17) 33(7) 50(17) 5(9) -31(13) 15(9) 
C23 67(15) 27(6) 61(18) -3(7) 19(13) 2(8) 
C24 60(16) 39(9) 138(33) 16(10) 11(19) -3(14) 
C25 101(18) 12(5) 265(55) -11(8) 110(28) 6(13) 
C26 193(41) 32(8) 192(47) -32(14) 158(40) -7(15) 
C27 172(36) 15(6) 163(40) 91(11) 77(32) 16(12) 
C28 78(18) 40(9) 210(51) -20(10) 44(25) 19(18) 
C29 59(15) 40(9) 157(35) -7(9) 72(20) 10(14) 
C30 84(28) 156(39) 236(67) 22(26) 74(37) 132(44) 
C31 78(20) 39(10) 238(55) 9(11) 83(29) -1(19) 
C32 51(18) 98(22) 268(64) -44(17) 66(29) -5(30) 
C33 40(12) 21(6) 172(35) -6(6) -8(16) -1(11) 
C34 47(16) 63(14) 151(39) 13(11) 21(20) 20(19) 
C35 18(9) 42(9) 242(48) 2(7) 2(17) -13(17) 
C36 35(13) 70(16) 236(54) 16(12) 21(22) 64(25) 
C37 56(13) 37(7) 56(17) 4(8) 22(12) 1(9) 
C38 38(11) 45(9) 70(19) -8(8) -7(12) -1(10) 
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Table 8.3. (Continued) 

1 &2 2 ^33 ^12 ^13 ^2 3— 

C39 75(17) 29(7) 112(28) 32(9) 17(18) 11(11) 
C40 69(16) 49(10) 69(20) -15(10) 39(15) -7(11) 
C41 65(15) 21(5) 96(23) 9(7) 12(15) 17(9) 
C42 100(25) 34(9) 280(62) 29(13) 52(33) 62(21) 
C43 48(15) 46(11) 413(86) -17(10) -62(29) 110(27) 
C44 238(54) 33(10) 108(31) 28(19) 75(34) 0(14) 
C45 44(12) 30(7) 122(28) 2(7) -12(15) -35(12) 
C46 63(16) 43(9) 105(26) 15(10) 22(17) 15(13) 
C47 94(26) 45(11) 191(50) 5(13) -61(28) -14(19) 
C48 58(17) 84(18) 173(42) 47(15) 43(22) 69(23) 
C61 80(20) 21(6) 201(47) -3(9) -4(24) 29(14) 
C62 63(17) 34(8) 228(46) 29(10) 62(24) -10(15) 
C63 109(26) 56(12) 134(34) -13(14) 102(27) 10(17) 
C64 61(17) 40(10) 303(64) 38(11) 56(27) 13(20) 
C65 120(33) 43(13) 247(66) -6(10) -42(36) -4(24) 
C71, 255(51) 32(9) 76(24) 66(18) 50(28) 27(12) 
C72* 163(17) 
C73 223(26) 
C74 275(36) 
CBl 27(9) 26(6) 110(24) 59(6) -5(12) 2(10) 
C82 133(14) 
083 160(17) 
C84 125(12) 
C91 182(37) 71(15) 219(49) -59(20) 122(37) -117(25) 
C92 182(20) 
C93 270(34) 
C94 209(24) 
Hl 50(0) 
H2 50(0) 

^ Isotropic thermal parameters (B's) are given for atoms 
!, C73, C74, C82, C83, C84 C92, 1 C93, C94, Hl y and H2 . 
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the opposite face (see Figure 8.1). In addition to these 

bridging oxygen and carbon atoms, the tungsten atoms are each 

bonded to 3 carboxylate oxygen atoms (05-013). The 5 oxygen 

atoms and 1 carbon atom bonded to each tungsten are arranged 

in a distorted octaheral fashion with an 0(C)-W-0(C) bond 

angle range (for adjacent oxygens and carbon) of 

79.4(7)-97.6(9)° (Table 8.5). The average W-0 bond distance 

is 2.02 A (Table 8.4), while the average W-C66 distance is 

2.07 A. 

The atomic arrangement around the chromium atoms is also 

approximately octahedral, with the additional coordination of 

4 carboxylate oxygen atoms and 1 water molecule (014-028) per 

chromium. The corresponding O-Cr-0 angle range is 

85.1(8)-95.7(9)°. As in the neutral species, there is a 

relatively small range of Cr-0 distances (1.91(2)-2.03(2) A), 

confirming the presence of Cr(III) rather than Cr(II), the 

latter would be expected to show a larger range, due to 

Jahn-Teller distortion. 

The entire cluster is linked together by the carboxylate 

(-0200(^2)3) groups, whose oxygens (05-031) are, in all but 

three cases (029-031), bound to tungsten or chromium atoms. 

Two of the four carboxylate groups bound to each chromium atom 

are coordinated to one of the chromium's two adjacent tungsten 

atoms, a third is coordinated to the other adjacent tungsten 

atom, and the fourth one is not coordinated to any other 

metals. The terminal carboxylate oxygens (029-031) are 
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Figure 8.1. Diagram showing the coordination between the 

central tungsten cluster and the chromium atoms 

in W3(CCHgC(CH3)3)03Cr3(H2O)3(OgCC(CH3)3)12^ * 
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Table 8.4. Refined bond distances for 

ATOMS DIST(A) ATOMS DIST(A) 

W1 - M2 2.631(2) Cr3 - 026 2.02(2) 
W1 - M3 2.641(3) Cr3 - 027 1.91(2) 
W2 - M3 2.657(2) Cr3 - 028 1.94(2) 
Ml - C66 2.07(2) C66 - C61 1.63(5) 
Ml - 02 1.93(1) C61 - C62 1.32(7) 
Ml - 03 1.96(1) C61 - HI 1.06(5) 
Ml - 05 2.10(2) C61 - H2 1.16(5) 
Ml - 06 2.01(2) C62 - C63 1.45(7) 
Ml - 07 2.15(2) C62 — C64 1.42(7) 
M2 - C66 2.06(2) C62 - C65 1.77(8) 
M2 - 02 1.95(2) 05 - CI 1.27(3) 
M2 - 04 1.93(2) 020 - CI 1.21(3) 
M2 - 08 2.14(2) CI - C13 1.58(4) 
M2 - 09 2.05(2) C13 - C14 1.50(5) 
M2 - 010 2.01(2) C13 - C15 1.50(6) 
M3 - C66 2.08(2) C13 - C16 1.47(6) 
M3 - 03 1.94(2) 06 - C2 1.27(3) 
M3 - 04 1.94(2) 015 - C2 1.25(3) 
M3 - Oil 2.17(2) C2 - C17 1.58(4) 
M3 - 012 2.02(2) C17 - C18 1.39(6) 
M3 - 013 2.04(2) C17 - C19 1.49(6) 
Crl - 02 1.95(2) C17 - C20 1.49(8) 
Crl - 014 1.99(2) 07 - C3 1.33(4) 
Crl - 015 1.98(2) 017 - C3 1.28(4) 
Crl - 016 1.93(2) C3 - C21 1.50(5) 
Crl - 017 1.95(2) C21 - C22 1.53(4) 
Crl - 018 2.02(3) C21 - C23 1.51(5) 
Cr2 - 03 1.97(2) C21 - C24 1.57(6) 
Cr2 - 019 1.94(2) 08 - C4 1.22(4) 
Cr2 - 020 2.03(2) 028 - C4 1.31(4) 
Cr2 - 021 1.96(2) C4 - C25 1.57(4) 
Cr2 - 022 1.91(2) C25 - C26 1.55(6) 
Cr2 - 023 1.99(2) C25 - C27 1.55(6) 
Cr3 - 04 1.99(2) C25 — C28 1.39(5) 
Cr3 - 024 2.02(2) 09 - C5 1.26(4) 
Cr3 - 025 1.95(2) 018 - C5 1.33(5) 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 8.5. Refined bond angles for 
W3(CCH2C(CH3)3)03Cr3(H2)3(02CC(CH3)3)^2l 

ATOMS ANGLE(°) ATOMS ANGLE(°) 

C66 _ Ml - 02 97.6(9)* 03 M3 013 165.3(7) 
C66 - Ml - 03 96.6(8) 04 - M3 - 012 165.1(7) 
C66 - W1 - 05 93.8(9) 04 - M3 - 013 86.0(7) 
C66 - Ml - 06 92.5(9) 012 - M3 - 013 79.4(7) 
C66 - Ml - 07 172.2(9) 02 - Crl - 015 93.8(7) 
02 - Ml - 03 98.6(7) 02 — Crl - 016 177.7(8) 
02 - Ml - 05 166.1(7) 02 - Crl - 017 88.8(8) 
02 - Ml - 07 87.0(7) 02 - Crl - 018 90.8(8) 
03 - Ml - 05 87.9(7) 02 - Crl - 014 87.7(8) 
03 - Ml - 06 166.0(7) 015 - Crl - 016 88.7(9) 
03 - Ml - 07 88.9(7) 015 - Crl - 017 89.6(9) 
05 - Ml - 06 80.9(7) 015 - Crl - 018 85.5(10) 
05 - Ml - 07 80.9(7) 015 - Crl - 014 178.0(10) 
06 - Ml - 07 81.1(7) 016 - Crl - 017 91.2(10) 
C66 - M2 - 02 96.9(8) 016 - Crl - 018 89.4(10) 
C66 - M2 - 04 96.3(9) 016 - Crl - 014 90.0(9) 
C66 - M2 - 08 171.5(9) 017 - Crl - 018 175.1(9) 
C66 - M2 - 09 96.0(8) 017 - Crl - 014 89.1(9) 
C66 - M2 - 010 88.9(9) 018 - Crl - 014 95.7(9) 
02 - M2 - 04 96.9(7) 03 - Cr2 - 019 89.4(8) 
02 - M2 - 08 90.5(7) 03 - Cr2 - 020 92.2(7) 
02 - M2 - 09 85.9(8) 03 - Cr2 - 022 177.8(8) 
02 - M2 - 010 169.8(7) 03 - Cr2 - 023 94.2(8) 
04 - M2 - 08 86.9(8) 03 - Cr2 - 021 87.6(7) 
04 - M2 - 09 167.0(7) 019 - Cr2 - 020 174.5(8) 
04 - M2 - 010 90.7(7) 019 - Cr2 - 022 89.4(9) 
08 - M2 - 09 80.4(7) 019 - Cr2 - 023 89.5(8) 
08 - M2 - 010 83.2(8) 019 - Cr2 - 021 90.2(8) 
09 - M2 - 010 85.1(8) 020 - Cr2 - 022 89.2(8) 
C66 - M3 - 03 96.9(8) 020 - Cr2 - 023 85.1(8) 
C66 - M3 - 04 95.6(8) 020 - Cr2 - 021 95.1(8) 
C66 - M3 - 012 88.7(9) 022 - Cr2 - 023 87.6(9) 
C66 - M3 - 013 95.4(9) 022 - Cr2 - 021 90.6(8) 
03 - M3 - 04 100.9(7) 023 - Cr2 - 021 178.1(9) 
03 - M3 - 012 92.8(7) 04 - Cr3 - 024 91.4(8) 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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Table 8.5. (Continued) 

ATOMS ANGLE(°) ATOMS ANGLE(°) 

04 - Cr3 _ 025 90.7(8) M3 - 013 C9 128.0(17) 
04 - Cr3 - 027 179.8(9) Crl - 015 - C2 133.9(18) 
04 - Cr3 - 028 89.8(8) Crl - 016 - CIO 133.3(20) 
04 - Cr3 - 026 90.0(8) Crl - 017 - C3 130.0(20) 
024 - Cr3 - 025 87.1(9) Crl - 018 - C5 132.7(22) 
024 - Cr3 - 027 88.5(10) M3 - 012 - C8 135.0(18) 
024 - Cr3 - 028 89.0(10) M3 - 013 - C9 128.0(17) 
024 - Cr3 - 026 177.6(9) Crl - 015 - C2 133.9(18) 
025 - Cr3 - 027 89.2(9) Crl - 016 - CIO 133.3(20) 
025 - Cr3 - 028 176.1(11) Crl - 017 - C3 130.0(20) 
025 - Cr3 - 026 94.8(9) Crl - 018 - C5 132.7(22) 
027 - Cr3 - 028 90.3(9) Cr2 - 019 - C7 132.3(19) 
027 - Cr3 - 026 90.1(9) Cr2 - 020 - CI 129.7(19) 
028 - Cr3 - 026 89.1(10) Cr2 - 022 - Cll 131.5(20) 
Ml - C66 - M2 79.2(9) Cr2 - 023 - C8 137.7(18) 
Ml - C66 - M3 79.2(9) Cr3 - 024 - C6 136.6(22) 
Ml - C66 - C61 138.8(22) Cr3 - 025 - C9 130.7(19) 
M2 - C66 - M3 79.8(9) Cr3 - 027 - C12 134.0(23) 
M2 - C66 - C61 135.1(21) Cr3 - 028 - C4 126.8(19) 
M3 - C66 - C61 122.3(22) 05 - CI - 020 128.4(27) 
Ml - 02 - M2 85.3(6) 05 - CI - C13 115.6(24) 
Ml - 02 - Crl 127.4(8) 020 - CI - C13 115.8(26) 
M2 - 02 - Crl 133.3(9) 06 - C2 - 015 127.8(24) 
Ml - 03 - M3 85.1(6) 06 - C2 - C17 117.5(24) 
Ml - 03 - Cr2 132.5(8) 015 - C2 - C17 114.7(22) 
MS - 03 - Cr2 125.1(8) 07 - C3 - 017 120.5(29) 
M2 - 04 - M3 86.6(7) 07 - C3 - C21 118.4(26) 
M2 - 04 - Cr3 126.3(9) 017 - C3 - C21 121.0(27) 
M3 - 04 — Cr3 133.2(9) 08 - C4 - 028 125.0(27) 
Ml - 05 - CI 129.0(18) 08 - C4 - C25 125.4(31) 
Ml - 05 - C2 129.7(17) 028 - C4 - C25 109.6(25) 
Ml - 07 - C3 135.8(18) 09 - C5 - 018 120.7(35) 
M2 - 08 — C4 137.5(22) 09 - C5 - C29 124.7(33) 
M2 - 09 - C5 128.0(22) 018 - C5 - C29 111.7(33) 
M2 - 010 - C6 133.5(22) 010 - C6 - 024 124.0(32) 
M3 - 012 - C8 135.0(18) 010 - C6 - C33 122.4(30) 
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Table 8.5. (Continued) 

ATOMS ANGLE(°) ATOMS ANGLE(°) 

024 - C6 - C33 113. 6(28) C5 - C29 - C32 101. 9(38) 
Oil - C l  - 019 122. 0(27) C30 - C29 - C31 130. 6(50) 
Oil - C7 - C37 121. 7(27) C30 - C29 - C32 96. 8(48) 
019 - C7 - C37 114. 8(26) C31 - C29 - C32 103. 2(30 
012 - C8 - 023 120. 8(24) C6 - C33 - C34 103. 8(31) 
012 - C8 - C41 123. 1(28) C6 - C33 - C35 102. 3(25) 
023 - C8 - C41 115. 9(26) C6 - C33 - C36 111. 3(30) 
013 - C9 - 025 126. 1(27) C34 - C33 - C35 107. 5(35) 
Cl - C13 - C14 109. 5(28) C34 - C33 - C36 114. 7(37) 
Cl - C13 - C15 101. 3(29) C35 - C33 - C36 115. 9(38) 
Cl - C13 - C16 109. 3(30) C7 - C37 - C38 109. 7(28) 
C14 - C13 - C15 110. 0(34) C7 - C37 - C39 104. 6(26) 
C14 - C13 - C16 118. 3(37) C7 - C37 - C40 109. 5(29) 
C15 - C13 - C16 107. 1(36) C38 - C37 - C39 112. 5(39) 
C2 - C17 - C18 115. 5(34) C38 - C37 - C40 108. 6(28) 
C2 - C17 - C19 109. 8(29) C39 - C37 - C40 111. 8(31) 
C2 - C17 - C20 101. 5(37) C8 - C41 - C42 108. 8(33) 
C18 - C17 - C19 120. 1(48) C8 - C41 - C43 112. 9(34) 
C18 - C17 - C20 107. 6(52) C8 - C41 - C44 108. 2(31) 
C19 - C17 - C20 99. 3(38) C42 - C41 - C43 107. 5(34) 
C3 - C21 - C22 107. 3(28) C42 - C41 - C44 115. 4(46) 
C3 - C21 - C23 112. 7(28) C43 - C41 - C44 104. 1(45) 
C3 - C21 - C24 103. 1(28) C9 — C45 — C46 116. 3(31) 
C22 - C21 - C23 113. 7(28) C9 - C45 - C47 108. 6(32) 
C22 - C21 - C24 109. 2(30) C9 - C45 - C48 110. 1(33) 
C23 - C21 - C24 110. 2(30) C46 - C45 - C47 107. 0(34) 
C4 - C25 - C26 109. 6(27) C46 - C45 - C48 110. 5(38) 
C4 - C25 - C27 110. 7(29) C47 - C45 - C47 103. 4(38) 
C4 - C25 - C28 105. 9(29) C66 - C61 - C62 136. 8(43) 
C26 - C25 - C27 112. 2(34) C61 - C62 - C63 114. 0(41) 
C26 - C25 - C28 105. 7(38) C61 - C62 - C64 120. 1(49) 
C27 - C25 - C2B 112. 7(33) C61 - C62 - C65 91. 5(39) 
C5 - C29 - C30 111. 8(30) C63 - C62 - C64 123. 6(45) 
C5 - C29 - C31 107. 43(35) C63 - C62 - C65 97. 8(42) 



www.manaraa.com

200 

Table 8.5. (Continued) 

ATOMS ANGLE(°) 

C64 - C62 - C65 95. 6(38) 
C72 - C71 - C73 134. 5(58) 
C72 - C71 - C74 84. 7(52) 
C72 - C71 - CIO 106. 5(38) 
C73 - C71 - C74 110. 3(61) 
C73 - C71 - CIO 107. 9(42) 
C74 - C71 - CIO 109. 6(61) 
C82 - C81 - CB3 101. 8(34) 
C82 - C81 - C84 110. 3(32) 
C82 - C81 - Cll 105. 3(29) 
C83 - C81 - C84 112. 6(35) 
C83 - C81 - Cll 113. 1(33) 
C84 - C81 - Cll 112. 9(28) 
C92 - C91 - C93 75. 7(47) 
C92 - C91 - C94 132. 2(58) 
C92 - C91 - C12 105. 9(46) 
C93 - C91 - C94 115. 2(62) 
C93 - C91 - C12 96. 9(48) 
C94 - C91 - C12 117. 7(52) 
016 - CIO - C71 118. 3(33) 
016 - CIO - 029 115. 2(32) 
C71 - CIO - 020 126. 5(41) 
022 - Cll - C81 116. 1(27) 
022 - Cll - 030 124. 2(30) 
cai — Cll - 030 119. 4(27) 
027 - C12 - C91 114. 5(36) 
027 - C12 - 031 124. 4(33) 
C91 - C12 - 031 120. 6(35) 
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evidently hydrated. 

The basic geometry of this cationic molecule is very 

similar to that of the neutral molecule. There are, however, 

some subtle differences. Removal of one electron from the 

central cluster has resulted in an approximately symmetrical 

lengthening of the W-W bonds (neutral species; d(W-W) = 

2.608(1), 2.608(1), 2.614(1) A; oxidized species; d(W-W) = 

2.631(2), 2.641(3), 2.657(2) A). This change is rather small, 

but is consistent with an electron being removed from a weakly 

bonding orbital in the cluster (contrary to what was 

expected). 

In the neutral molecule three carboxylate groups each 

shared both of their oxygen atoms with single chromium atoms. 

In the oxidized form one of these shared oxygens is displaced 

by a water molecule and the groups are left "hanging". The 

carbon atoms in these groups (C71-C94) have correspondingly 

large thermal parameters (Table 8.2). Iodine to water oxygen 

distances of d(I-014) = 3.34(2) A, d(I-021) = 3.41(2) A and 

d(1-026) = 3.37(2) A are all indicative of hydrogen bonding 

(the sum of the van der Waals radii is 3.55 A), demonstrating 

that the iodine is nestled rather snugly into the molecule. 

When the structure of the neutral species was first 

solved, the carbon which triply bridges the triangular 

tungsten ring was assigned as an oxygen. This assumption was 

based on prior analyses and interpretations of the assumed 

reaction mechanism for the preparation of these materials. 
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Subsequent high resolution mass spectrometric results 

revealed, however, that the atom really is a carbon, even 

though there is no obvious mechanism for the insertion of a 

carbon into that site. In this investigation, the atom was 

first refined as an oxygen (01). It was found after some 

refinement that the temperature factor for this atom was 

significantly larger than the correspondinging ones for the 

other bridging atoms (B(01) = ""ID vs. B(02,03,04) = "5A^). 

This is the behavior expected when an atom is misidentified in 

this manner. Because this complex is held together so loosely 

by the carboxylate groups. It was not clear whether this was a 

real phenomenon, or merely some disordering of the atom. On 

the assumption that the earlier chemical analyses were 

accurate, no attempt was made to change the identity of the 

atom. When the new mass spectrometric results were made 

available, the atom was immediately reidentified as a carbon 

and allowed to refine. Labelled as a carbon (C66), the 

temperature factor refined to a value of "^5 A^. Whereas this 

evidence can not be considered conclusive, the indication was 

clear and was supported by the mass spectrometric results. 
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8.2. Structure Determinations of Cu(N2C^2^Hg(OH)2)2^^12 

and Cu(N2CiiHg(0H)2)2(N02)2'2H20 

8.2.1. Introduction 

The structures of complexes of di-2-pyridylketone have 

been studied during the past decade^^"^^, primarily using 

spectroscopic and magnetic methods. Of interest in these 

materials is the fact that hydration occurs across the ketone 

double bond in the ligand upon complexation. The questions as 

to whether the ligand is a ketone or a diol and whether the 

ligand is anionic or neutral were previously unanswered since 

no single crystal investigations had been attempted. The 

synthesis of the title complexes was carried out by Dr. 

William Jensen (Department of Chemistry, South Dakota State 

University) by reacting copper(II) chloride and copper(II) 

nitrate, respectively, with di-2-pyridylketone in 2:1 

stoichiometric amounts, and the crystal structure 

determinations were carried out in our laboratory. These 

complexes were studied to determine the effects of changing 

the anion and the extent of hydration. Our results clearly 

show that the di-2-pyridylketone ligand exists in a neutral 

diol form in both compounds. 

8.2.3. Collection and reduction of X-rav data 

Crystals suitable for data collection, approximately 

0.20-0.30 mm on a side, were attached to glass fibers and 
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mounted on standard translatlonal goniometers. All X-ray data 

were collected at 298K on an automated four-circle 
o o 

diffractometer designed and built at Ames Laboratory. The 

unit cell parameters were initially calculated using the 
OQ 

automatic indexing procedure BLIND. The observed systematic 

absences of (I) hkl: h+k=2n+l and hOl; l=2n+l and (II) hOl; 

h+l=2n+l and OkO: k=2n+l, coupled with positive tests for a 

center of symmetry^^, indicated that the correct space groups 

were C2/c and P2^/n, respectively. Final lattice constants 

were determined by a least squares fit to the 20 values of 

higher angle reflections yielding the cell parameters in 

Tables 8.6 and 8.7. An w-scan mode of data collection was 

used in both cases, with the scan width determined for each 

reflection as it was measured. Intensity data were collected 

from the octants h,k,l ; -h,-k,l ; -h,k,-l and h,-k,-l within 

20 limits of 50°. The intensities were corrected for Lorentz 

and polarization effects and equivalent reflections were 

averaged. No absorption corrections were made as the 

absorption coefficients are both very low. Tables 8.6 and 8.7 

contain tabulations of the pertinent information relavent to 

the data collection and reduction. 

8.2.3. Solution and refinement of structures 

The structure of the chloride salt (I) was solved using 

ALCAMPS as described in section 5.4. Analysis of the 

three-dimensional Patterson map for the nitrate salt (II) 
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Table 8.6. Crystal Data for CU(N2C-|^^Hq(0H)2)2^12'^'^2® (D 

Formula (Mol. Wt.) 

a, A 

b 

c 

P 

Y 

V, 

Z 

Crystal System 

Space Group 

Radiation, X, A 

3 
Pcalc'd' 9/cm-

-1 Abs. Coeff., p, cm 

Temperature, K 

2© Range 

No. of Observed Refis 

No. of Variables 

R (refinement), % 

Rpq ( ref inement ), % 

CuClgOgN^CggHg* (606.7) 

14.504(4) 

12.244(8) 

14.630(3) 

90.00 

90.92(4) 

90.00 

2597.8 

4 

monoclinic 

C/c 

MoK^, 0.71034 

1.49 

11.30 

298 

0° <= 2© <= 50o 

1800 

169 

5.4 

6.9 
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Table 8.7. Crystal Data for Cu(N2C-j^j^Hg(0H)2)2^N03)2'H2O (II) 

Formula (Mol. Wt.) 

a, A 

b 

c 

a, ° 

P 

Y 

V, 

Z 

Crystal System 

Space Group 

Radiation, X, A 

3 
Pcalc'd' 9/cm-

- 1  Abs. Coeff., M, cm 

Temperature, K 

2© Range 

No. of Observed Refis 

No. of Variables 

R (averaging), % 

R (refinement), % 

Rjg (refinement), % 

Cu0iiNgC22H22 (609.8) 

7.601(5) 

11.977(4) 

14.463(6) 

90.00 

93.10(8) 

90.00 

1314.7 

2 

monoclinic 

P 2 ^ / n  

MoK^, 0.71034 

1.53 

9.42 

298 

0° (= 20 <= 50° 

1718 

181 

3.0 

6.3 

8 . 6  
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revealed the appropriate position for the copper atom, and 

32 
electron density maps generated from the structure factors 

phased by the copper atom yielded the probable locations for 

all other non-hydrogen atoms. These positions and the 

associated anisotropic thermal parameters were refined by a 

least-squares technique. The positions for all hydrogen 

atoms in the bi-2-pyridylketone ligands calculated assuming a 

C-H distance of 1.05 A. Difference electron density maps were 

generated from which some of the hydroxyl hydrogens were 

identified. The isotropic thermal parameters for all hydrogen 

7 
atoms were set at 4 A and neither the positional nor thermal 

parameters for these atoms were refined. Full matrix 

refinement of the positional and thermal parameters for all 

non-hydrogen atoms yielded final conventional residual 

agreement factors of R = 0.054(1) and R = 0.063(11). The 

atomic scattering factors used were those found in the 

International Tables for X-ray Crystallography^^ with those 

for copper and chlorine being corrected for anomalous 

dispersion effects.^* 

Final positional parameters for the atoms in the two 

complexes are listed in Tables 8.8 and 8.9, and anisotropic 

thermal parameters are given in Tables 8.10 and 8.11, for (I) 

and (II), respectively. 
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Table 8.8. Refined Atomic Coordinates* (xlO*) for 
Cu(N2CiiHg(0H)2)2Cl2"4H20 (I) 

ATOM X y Z 

Cu 0 . 5000 5000 
CI 1176(1) 963(2) 6316(1) 
N1 735(3) 4784(4) 6158(3) 
N2 -505(3) 6360(4) 5550(3) 
01 1250(3) 6361(3) 4933(2) 
02 , 1744(3) 7446(3) 6159(3) 
03 (HLO) ° 947(4) 8894(5) 3474(4) 
04 (H7O) 3076(3) 5767(4) 4953(3) 
CI ^ 1229(4) 5647(5) 6454(4) 
C2 1802(4) 5597(6) 7214(4) 
C3 1863(5) 4606(6) 7684(4) 
C4 1348(5) 3712(6) 7378(4) 
C5 789(4) 3831(5) 6622(4) 
C6 120(4) 7056(5) 5900(4) 
C7 -125(5) 8046(5) 6302(4) 
C8 -1069(5) 8292(6) 6347(5) 
C9 -1706(5) 7571(6) 5993(4) 
CIO -1408(4) 6609(5) 5591(4) 
Cll 1113(4) 6669(5) 5858(4) 
HI 390 3140 6390 
H2 1390 2950 7740 
H3 2310 4540 8280 
H4 2200 6290 7450 
H5 380 8610 6580 
H6 -1280 9050 6660 
H7 -2430 7770 6030 
H8 -1910 6040 5310 
H9 6220 4000 6280 
HIO 3220 5090 4750 
Hll 1500 9060 4840 
H12 1590 8090 5880 

* Atomic coordinates are given as fractions of the unit 
cell. 

^ These oxygen atoms are from water molecules. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 8.9. Refined Atomic Coordinates^ (xlO^) for 
Cu(N2C^^Hg(OH)2)g(NOg)^'ZH^O (II) 

ATOM X Y Z 

Cu 5000 . 5000 5000 
01 5644(5) 4133(3) 6526(3) 
02 3788(6) 2897(3) 7257(3) 
03 1831(7) 7429(4) 3195(4) 
04 1852(13) 8378(5) 4433(4) 
05 , 889(15) 9080(6) 3185(5) 
06 (H_0)G 8954(8) 836(4) 3783(4) 
N1 ^ 2867(6) 5219(4) 5715(3) 
N2 4283(6) 3373(4) 4854(3) 
N3 1466(8) 8297(5) 3610(4) 
CI 2590(8) 4482(4) 6381(4) 
C2 1125(10) 4516(6) 6922(5) 
C3 -69(10) 5375(7) 6734(5) 
C4 235(10) 6144(6) 6048(6) 
C5 1695(8) 6045(6) 5575(6) 
C6 3872(7) 2838(4) 5624(4) 
C7 3375(8) 1730(5) 5622(4) 
C8 3293(9) 1158(5) 4793(5) 
C9 3705(8) 1710(5) 3993(5) 
CIO 4199(7) 2812(5) 4047(4) 
Cll 3992(8) 3565(4) 6489(4) 

^ Atomic coordinates are given as fractions of the unit 
cell. 

^ This oxygen atom is from the water molecule. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 8.10. Anisotropic Thermal Parameters^ (xlO^) for 
CU(N2C^3^Hq(OH)2)2C12*^"2° 

ATOM Â 11- -22- J& 33- Jâ 12- J. 13-

Cu 31(1) 44(1) 31(1) -1(0) -1(0) 
CI 49(1) 92(2) 60(1) 8(1) 4(1) 
N1 30(2) 55(4) 31(2) -1(2) 2(2) 
N2 34(2) 51(4) 30(2) 1(2) 1(2) 
01 39(2) 60(3) 31(2) -3(2) 4(2) 
02 41(2) 56(3) 45(2) -15(2) -3(2) 
03 53(3) 133(6) 63(3) 7(3) 0(2) 
04 35(2) 73(4) 40(2) 3(2) 3(2) 
CI 26(3) 54(4) 28(3) 1(3) 3(2) 
C2 35(3) 73(6) 33(3) -1(3) 3(2) 
C3 47(4) 68(5) 38(3) 9(4) 1(3) 
C4 49(4) 65(5) 42(3) 9(4) 5(3) 
C5 40(3) 51(4) 34(3) 2(3) 6(2) 
C6 37(3) 42(4) 25(2) -2(3) 1(2) 
C7 53(4) 47(5) 42(3) 11(3) 4(3) 
C8 46(4) 62(5) 52(4) 14(4) 4(3) 
C9 45(4) 67(5) 41(3) 14(4) 8(3) 
CIO 34(3) 62(5) 37(3) 8(3) 3(2) 
Cll 35(3) 43(4) 29(3) -5(3) 2(2) 

—&23-

-3(0) 
-15(1) 
-1(2) 
-2(2) 
1(2) 

-4(2) 
-12(4) 
-2(2) 
-1(3) 
-2(3) 
4(4) 
5(3) 
3(3) 
1(3) 

-3(3) 
2(4) 
4(3) 
7(3) 
-1(3) 

^ The form of the anisotropic thermal factor is 

expC-(Piih2+P22k^+P33l^+29l2hk+2Pi3hl+2B23kl^^• 

* Estimated standard deviations are given in parentheses 
for the least significant digit. 
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Table 8.11. Anisotropic Thermal Parameters^ (xlO^) for 
Cu(N2CiiHg(0H)2)2(N03)2'2H20 (II) 

ATOM -êll- 3. 22- 3. 33- 3. 12- Jè. 13- -^23-

Cu 
01 
02 
03 
04 
05 
06 
NI 
N2 
N3 
Cl 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
CIO 
Cil 

160(2) 
202(8) 
329(12) 
344(14) 
715(3) 

1131(42) 
441(16) 
162(9) 
168(9) 
298(14) 
198(12) 
186(16) 
203(15) 
176(14) 
205(13) 
161(11) 
216(13) 
231(14) 
213(14) 
152(11) 
186(16) 

44(1) 
57(3) 
62(3) 
92(4) 
117(6) 
148(7) 
97(4) 
52(4) 
51(3) 
63(4) 
46(4) 
8 6 ( 6 )  
119(7) 
65(6) 
55(5) 
47(4) 
52(4) 
46(4) 
67(5) 
72(5) 
8 6 ( 6 )  

38(1) 
45(2) 
45(2) 
86(3) 
61(3) 
79(4) 
53(3) 
40(2) 
36(2) 
54(4) 
39(3) 
63(4) 
64(4) 
86(5) 
61(4) 
40(3) 
53(4) 
73(4) 
54(4) 
41(3) 
63(4) 

2(1) 
0(4) 

-5(5) 
81(7) 
1(11) 

271(15) 
31(7) 

-10(5) 
7(5) 

30(6) 
-14(6) 

5(8) 
-28(9) 

2 ( 8 )  
12(7) 
-3(5) 
-8(6) 
-9(7) 
1(7) 

-7(6) 
5(8) 

20(1) 
2(3) 
22(4) 
-29(6) 
-4(8) 
39(10) 
28(5) 
13(4) 
10(4) 
2 2 ( 6 )  
13(5) 
44(7) 
47(6) 
24(6) 

- 1 1 ( 6 )  
7(5) 

2 2 ( 6 )  
18(6) 
19(6) 
18(5) 
44(7) 

4(0) 
0 ( 2 )  

14(2) 
•26(3) 
-8(3) 
28(5) 
6(3) 
2 ( 2 )  
0 ( 2 )  
7(3) 

-5(3) 
-15(4) 
-21(5) 
•25(4) 
1(4) 

-3(3) 
2(3) 

-7(4) 
•16(4) 
-9(3) 
15(4) 

^ The form of the anisotropic thermal factor is 

expC-(Pi2h^+P22^ ^^33^^^^^12h^^2Pi3hl+2P23kl)3• 

* Estimated standard deviations for the thermal 
parameters are given in parentheses for the least significant 
digit. 
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8.2.4. Discussion of structures 

In these complexes, see Figure 5.5 for an ORTEP drawing 

of the molecular cation, the two ligand groups are bonded to 

the metal atom in a tridentate fashion. 

The pyridyl nitrogens can be viewed as strongly coord­

inating to the copper in the equatorial plane (d(Cu-N) = 

1.990(5)-2.036(5) A) (see Tables 8.12 and 8.13), while one of 

the hydroxy1 groups on each ligand is weakly coordinating in 

the axial direction (d(Cu-O) = 2.464(4)-2.467(4) A). There is 

a corresponding lengthening of the Cll-01 bond relative to the 

Cll-02 bond (1.42 A vs. 1.39 A). These data Indicate that 

these complexes are stabilized in the dlol form by the 

interaction of the hydroxy1 oxygen with the copper. The angle 

between a line from the copper to oxygen (01) and the normal 

to the equatorial plane is "25°; such a distortion is not 

unexpected in light of the sterlc requirements imposed by the 

ligand. 

The bl-2-pyridylketone groups in both structures are very 

well behaved. The average C-C bond distances within the rings 

are 1.388(9) A and 1.388(10) A for (I) and (II), respectively. 

Both values are very close to the accepted value for pyridine, 

1.395(1) A. Similarly, the average C-N bond distances, 

1.346(7) A and 1.343(8) A, are close to the accepted value of 

1.340(1) A. The average bond angles, 120.0°(I) and 120.0°(II) 

(Tables 8.14 and 8.15), are equally representative. All of 

these data lead to the realization that there is no 
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Table 8.12. Refined bond distances for 
CU(N2CJ^^HQ(0H)2)2C12''^H2° 

ATOMS DISTANCE(A) 

Cu - N1 2.006(5) 
Cu - N2 1.994(5) 
Cu • - 01 2.465(5) 
N1 - CI 1.344(7) 
N1 • - C5 1.351(8) 
CI • - C2 1.379(8) 
C2 • - C3 1.397(10) 
C3 - C4 1.395(10) 
C4 • - C5 1.369(9) 
N2 • - C6 1.340(7) 
N2 • - CIO 1.347(7) 
C6 • - C7 1.395(9) 
C7 -- C8 1.405(9) 
C8 • - C9 1.373(10) 
C9 • - CIO 1.388(9) 
CI • - Cll 1.534(8) 
C6 -- Cll 1.519(8) 
Cll • - 01 1.422(7) 
Cll -- 02 1.387(7) 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 8.13. Refined bond distances for 
CufNgCiiHg(OH)2)2<NO3)2•ZHgO (II) 

ATOMS DISTANCE(A) 

Cu - N1 1.990(5) 
Cu - N2 2.036(5) 
Cu - 01 2.464(4) 
N1 - CI 1.330(8) 
N1 - C5 1.355(8) 
CI - C2 1.392(10) 
C2 - C3 1.401(11) 
C3 • - C4 1.398(11) 
C4 - C5 1.394(10) 
N2 - C6 1.326(8) 
N2 • - CIO 1.349(8) 
C6 • - C7 1.384(8) 
C7 • - C8 1.371(10) 
C8 • - C9 1.383(10) 
C9 • - CIO 1.383(10) 
CI • - Cll 1.536(8) 
C6 • - Cll 1.523(8) 
Cll • - 01 1.417(7) 
Cll -- 02 1.381(7) 
N3 -- 03 1.242(8) 
N3 • - 04 1.211(8) 
N3 -- 05 1.190(10) 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 8.14. Refined bond angles for 
Cu(N2CiiHg(0H)2)2Cl2'4H20 (I) 

ATOMS ANGLE(°) 

N1 - Cu - N2 87.9(2) 
N1 - Cu - 01 105.0(2) 
N2 - Cu - 01 74.1(2) 
Cu - N1 - CI 116.2(4) 
Cu - N1 - C5 124.3(4) 
CI - N1 - C5 119.4(5) 
N1 - CI - C2 122.4(5) 
N1 - CI - Cll 113.9(5) 
CI - C2 - C3 117.9(6) 
C2 - C3 - C4 119.6(6) 
C3 - C4 - C5 118.9(6) 
C4 - C5 - N1 121.8(6) 
Cu - N2 - C6 115.8(4) 
Cu - N2 - CIO 124.8(4) 
C6 - N2 - CIO 119.4(5) 
N2 - C6 - C7 122.6(5) 
N2 - C6 - Cll 114.9(5) 
C6 - C7 - C8 117.4(6) 
C7 - C8 - C9 119.7(6) 
C8 - C9 - CIO 119.5(6) 
C9 - CIO - N2 121.4(6) 
CI - Cll - C6 109.1(4) 
CI - Cll - 01 108.0(4) 
CI - Cll - 02 108.3(4) 
C6 - Cll - 01 105.5(4) 
C6 - Cll - 02 113.2(5) 
01 - Cll - 02 112.6(4) 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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Table 8.15. Refined bond angles for 
CufNgCiiHg(OH)2)2(NO3)2'ZHgO (II) 

ATOMS ANGLES ( ° ) 

N1 - Cu - N2 87.3(2) 
N1 - Cu - 01 73.5(2) 
N2 - Cu - 01 74.1(2) 
Cu - N1 - CI 116.9(4) 
Cu - N1 - C5 123.0(4) 
CI - N1 - C5 120.0(5) 
N1 - CI - C2 122.9(6) 
N1 - CI - Cll 114.4(5) 
CI - C2 - C3 118.0(7) 
C2 - C3 - C4 118.9(7) 
C3 - C4 - C5 119.6(6) 
C4 - C5 - N1 120.6(6) 
Cu - N2 - C6 116.6(4) 
Cu - N2 - CIO 123.9(4) 
C6 - N2 - CIO 119.6(5) 
N2 - C6 - C7 122.0(6) 
N2 - C6 - Cll 114.1(5) 
C6 - C7 - C8 118.9(6) 
C7 - C8 - C9 119.4(6) 
C8 - C9 - CIO 119.0(6) 
C9 - CIO - N2 121.1(6) 
CI - Cll - C6 108.1(5) 
CI - Cll - 01 105.4(5) 
CI - Cll - 02 113.0(5) 
C6 - Cll - 01 108.7(5) 
C6 - Cll - 02 108.9(5) 
03 - N3 - 04 119.8(7) 
03 - N3 - 05 119.8(7) 
04 - N3 - 05 120.3(7) 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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evident strain or distortion in the rings. It seems likely, 

therefore, that the stabilization is accomplished merely by a 

rotation of the rings about the Cl-Cll and C6-C11 bonds. The 

intraligand pyridine ring dihedral angles are (I);115° and 

(II):97°, respectively. 

As one might expect, hydrogen bonding appears to play a 

part in the packing in these structures. Interatomic 

distances of (I) d(01-04) - 2.73, d(Cl-03) = 3.20, d(Cl-04) = 

3.00 A, and (II) d(02-06) = 2.67, d(01-03) - 2.70 A, indicate 

that all water molecules and both anions are hydrogen bonded 

to one or the other of the hydroxy1 oxygens. Figures 8.2 and 

8.3 show the coordination of the anions and water molecules 

with the cationic molecules. 

Even though the anions interact with the molecular cation 

through hydrogen bonding, the presence of a different anions 

in each structure appears to have no appreciable effect on the 

coordination of the metal atom or the arrangement of the 

ligand in the complex. Respective bond distances and angles 

are all within the estimated standard deviations of one 

another. 



www.manaraa.com

218 

Figure 8.2. Unit cell diagram showing the molecular structure 

and crystal packing in Cu(N2Cj^j|^Hg(0H)2)2^^2 ^^2^' 
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Figure 8.3. Unit cell diagram showing the molecular structure 

and crystal packing in Cu(N2Cj^j^Hg(0H)2)2^''®3^2*~ 

H2O. 
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8.3. Structure Determination of Cd^QfSCHgCHgOHii^tClO^l^'GHgO 

8.3.1» Introduction 
1 1 3  

Cd NMR spectra of the hydrated and dehydrated forms of 

this compound show that there is a splitting of resonances 

between cadmiums with identical coordination, and that the 

degree of splitting is different for the two forms. There is 

greater splitting in the hydrated form, presumably due to a 

larger deviation from the approximate 4 symmetry of the 

cation. The crystal structure determination of 

Cd^QtSCHgCHgOHi^gtClO^i^'SHgO was undertaken in order to 

provide structural confirmation of assigned NMR resonances for 

the cadmium sites in the cation. The X-ray diffraction 

results provide structural evidence consistent with this 

hypothesis. A number of different salts of this cation have 

been studied over the years^^ , and Haberkorn** has proposed 

a mechanism of exchange between cadmium sites. This mechanism 

will be discussed in terms of the appropriate atomic 

arrangements. 

8.3.2. Collection and reduction of X-rav data 

Crystals of this compound were prepared in Dr. Kurtz's 

research group (Department of Chemistry, Iowa State 

University) using previously published methods. À crystal 

with approximate dimensions of 0.2 mm on a side was selected 

for X-ray structural analysis. The crystal was sealed in a 
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glass capillary and mounted on a goniometer head. Data were 

collected using monochromatic MoK^ radiation at 143K on a 

four-circle diffractometer designed and built at Ames 

Laboratory and equipped with a Bewared cold nitrogen gas 
no 

delivery system. Nine independent reflections taken from 

four w-oscillation photographs at a variety of $ settings were 

29 
input to an automatic indexing algorithm. The resulting 

reduced cell and reduced cell scalars indicate a C-centered 

monoclinic cell. Data were collected from the octants h,k,l 

and -h,-k,l. The intensities of three standard near-axial 

reflections were measured after every 75 reflections during 

data collection to monitor decay or shifting of the crystal. 

No appreciable decay was exhibited. The final cell parameters 

and standard deviations were calculated from the tuned angles 

for 16 higher angle reflections (25.98° <= 20 < = 33.32°). The 

systematic absences hkl: h+k=2n+l and hOl; l=2n+l, along with 

statistical evidence of centricity^^, uniquely define the 

space group as C2/c. All data were corrected for Lp effects 

and appropriately averaged. All pertinent information 

relative to the unit cell and data collection is compiled in 

Table 8.16. 

8.3.3. Solution and refinement of structure 

As described in Section 5.5, all unique cadmium(6), 

chlorine(2) and sulfur(8) atomic positions were obtained from 

a Patterson superposition map using ALCAMPS. The remaining 
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Table 8.16. Crystal Data for Cd^Q(SCH2CH20H)]^g(C104)4-8H20 

Formula (Mol. Wt.) 

a, A 

b 

c 

P 

y  

Z 

Crystal System 

Space Group 

Radiation, x, A 

Pcalc'd' 9/cm' 
-1 Abs. Coeff.f M, cm 

Temperature, K 

20 Range 

No. of Refis Collected 

No. of Observed Refis 

No. of Variables 

R (averaging), % 

R (refInement), % 

R^ (ref inement), % 

16^40^32^80 ̂ 2899'86) 

32.074(6) 

13.1417(6) 

25.162(4) 

90.00 

126.12(1) 

90.00 

8566.9(10) 

4 

monoclinic 

C2/C 

MoK^^, 0.70954 

2.25 

29.11 

143 

0° <= 20 <= 50° 

8988 

6470 

541 

4.9 

7.2 

9.2 
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non-hydrogen atoms were Identified from the resulting electron 

32 
density map. All positional parameters were refined using 

least squares refinement to a final residual agreement factor 

31 
of R=7.2%. All non-hydrogen atoms were allowed to refine 

anlsotroplcally. C42 and C82 refined to relatively large 

thermal ellipsoids (Table 8.18), with their long axes roughly 

perpendicular to the mean planes described by atoms 

Cd4-041-C41-S4 and Cd6-081-C81-S8, respectively. For this 

reason an attempt was made to resolve atoms C42 and C82 into 

two atomic positions each, one above and one below their 

corresponding mean planes. This model provided no improvement 

in the residual agreement factor and did not converge 

effectively. This attempt was thus abandoned and C42 and C82 

were refined as individual atoms. The occupation factor for 

09 was fixed at 0.65 and isotropic refinement was carried out 

on it. For 010, the occupation factor was set at 0.85 and it 

was allowed to refine anlsotroplcally. It was necessary to 

fix these occupancies because of excessive correlation between 

the occupancy factors and thermal parameters. The occupation 

factors for 0111 and 012 were allowed to refine along with 

their anisotropic thermal parameters. Their occupancy factors 

converged to 0.626 and 0.603, respectively. Ethylenic 

hydrogen atomic positions were calculated but not varied. A 

final full-matrix refinement of positions and thermal 

parameters converged at R=7.2%. The difference Fourier map 

was featureless with maxima of less than 1 electron/A^. Table 
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8.17 lists the final positional parameters for all atoms. The 

refined thermal parameters for all non-hydrogen atoms are 

given in Table 8.18 (the hydrogen thermal parameters were all 

2 set at B=4.0 A ). Selected bond distances and angles are 

given in Tables 8.19 and 8.20. 

8.3.4. Discussion of structure 

Figure 5.7 shows the structure of the Cd-S framework 

(including hydroxy1 oxygens) of the cation. The crystal-

lographic two-fold axis which passes through Cd2 and Cd5 is 

oriented vertically. The eight perchlorates and ten oxygens 

from water molecules which are within hydrogen bonding 

distance (<=3.0 A) to a cation hydroxy1 oxygen are also 

included in Figure 5.7. Not included in Figure 5.7, however, 

are the ethylenic carbon atoms in the mercaptoethanol 

(-SCHgCHgOH) groups. Carbon atoms labelled Cnl and Cn2 join 

sulfur atoms Sn and oxygen atoms Onl, respectively. 

This unusual cation contains cadmium atoms with three 

different coordinations: (1) four with approximate octahedral 

coordination (Cdl,Cdl',Cd3 and Cd3'), (2) four with 

approximate trigonal bipyramidal coordination (Cd4,Cd4',Cd6 

and Cd6') and (3) two with distorted tetrahedral coordination 

(Cd2 and Cd5). 

There are two types of perchlorates surrounding each 

cation. The first type consists of the four perchlorates 

nearest Cd2 in Figure 5.7 (perchlorate^). Three of the four 
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Table 8.17. Refined Atomic Coordinates^ (xlO^)^ for 
Cd ( SCHgCHgOH ) ( CIO4 ) 4 • BHgO 

ATOM X Y Z 

Cdl 40073(5)* 133259(9) 5126(7) 
Cd2 50000(0) 131490(1) 25000(0) 
Cd3 37644(4) 87799(9) 26157(5) 
Cd4 47563(4) 111685(9) 35943(6) 
Cd5 50000(0) 87920(1) 25000(0) 
Cd6 37447(4) 108045(9) 13070(5) 
Cll 3886(2) 6710(4) 9578(3) 
C12 2266(2) 9702(4) 8727(2) 
SI 4690(2) 14314(3) 1555(2) 
S2 4486(1) 11892(3) 363(2) 
S3 3363(1) 12386(3) 628(2) 
S4 4356(1) 11936(3) 2447(2) 
S5 4411(1) 9577(3) 3742(2) 
S6 4295(1) 7709(3) 2352(2) 
S7 3260(1) 10168(3) 1745(2) 
SB 4561(1) 9987(3) 1513(2) 
Cll 4246(8) 15133(15) 1585(11) 
C12 3863(9) 15602(21) 1000(10) 
Oil 3587(4) 14962(9) 444(5) 
C21 4734(6) 12615(13) -32(7) 
C22 4770(8) 13715(15) 101(12) 
021 4279(5) 14110(9) -121(7) 
C31 2950(6) 11954(12) -240(8) 
C32 2800(6) 12862(13) -694(8) 
031 3253(4) 13316(11) -590(6) 
C41 3857(7) 12786(15) 2353(8) 
C42 3936(12) 13054(24) 2962(14) 
041 4115(5) 12352(10) 3431(6) 
C51 3944(7) 9960(13) 3898(8) 
C52 3526(6) 9116(14) 3686(8) 
051 3255(4) 8963(9) 3023(5) 
C61 4623(6) 6963(12) 3122(8) 
C62 4227(6) 6399(12) 3168(7) 
061 3882(4) 7115(8) 3146(5) 

^ Atomic coordinates are given as fractions of the unit 
cell. 

^ Cadmium coordinates are scaled xlO^. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 8.17. (Continued) 

ATOM X Y Z 

C71 2695(6) 9451(13) 1086(8) 
C72 2810(6) 8323(14) 1098(8) 
071 2967(4) 7926(9) 1717(5) 
C81 4256(7) 9148(14) 799(9) 
C82 3756(8) 9034( 31) 458(15) 
081 3399(14) 9563 ( 8) 436(5) 
01 3882(5) 7721( 9) 9348(7) 
02 3452(6) 6572( 15) 9586(10) 
03 3904(9) 5983( 13) 9161(12) 
04 4343(5) 6544( 17) 222(8) 
05 1820(5) 9078( 10) 8297(7) 
06 2700(6) 9257( 13) 8795(9) 
07 2184( 6) 692( 12) 8458(7) 
08 2363( 5) 9731( 13) 9375(6) 
09 1883( 9) 1289( 19) 1760(12) 
010 7248( 8) 2597( 17) 2007(13) 
0111 7244( 7) 4459 ( 18) 2355(10) 
012 7689 ( 12) 5927( 27) 2474(17) 
Hlll^ 4456 15653 1959 
H112 4032 14657 1685 
H121 4084 17124 904 
H122 3661 17107 1108 
H211 4480 12485 -547 
H212 5100 12326 143 
H221 4901 14082 -142 
H222 5028 13828 609 
H311 2621 11615 -335 
H312 3160 11437 -312 
H321 2610 13400 -502 
H322 2552 12607 -1183 
H411 3505 12397 2063 
H412 3848 13438 2111 
H421 3583 13348 2829 
H422 4208 13674 3156 
H511 3754 10614 3628 
H512 4142 10097 4401 
H521 3281 9351 3808 
H522 3713 8434 3942 
H611 4834 7442 3526 
H612 4862 6417 3128 

^ Hydrogen positions were calculated but not refined. 
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Table 8.17. (Continued) 

ATOM X Y Z 

H621 4420 5993 3602 
H622 4015 5909 2760 
H711 2569 9752 635 
H712 2401 9515 1155 
H721 3109 8240 1045 
H722 2479 7948 716 
H811 4352 8412 980 
H812 4416 9337 552 
H821 3651 8405 233 
H822 3695 9564 -42 

oxygens in every perchlorate^ are each within hydrogen bonding 

distance of a hydroxyl oxygen from adjacent cations. 04 is 

not within hydrogen bonding distance of either a cation 

hydroxyl or a water molecule. The second type of perchlorate 

consists of those nearest Cd5 (perchlorateg). Two of the 

oxygens in every perchlorateg are each within hydrogen bonding 

distance of a cation hydroxyl while a third oxygen, 07, is 

hydrogen bonded to water; 06 has no hydrogen bonds. 

As mentioned in the introduction, the cation has 

approximate 4 symmetry through the point halfway between Cd2 

and Cd5. This symmetry, if true, would relate Cdl to Cd3, Cd4 

to Cd6, and Cd2 to Cd5. NMR results indicate that the extent 
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Table 8.18. Anisotropic Thermal Parameters^ (xlO^) for 
Cd^Q(SCHgCHgOH)16 < CIO4)4•BHgO 

ATOM 

Cdl 
Cd2 
Cd3 
Cd4 
Cd5 
Cd6 
Cil 
C12 
51 
52 
53 
54 
55 
56 
57 
58 
Cil 
C12 
011 
C21 
C22 
021 
C31 
C32 
031 
C41 
C42 
041 
C51 
C52 
051 
C61 
C62 

U 
11-

39(1) 
46(1) 
30(1) 
38(1) 
26(1) 
28(1) 
69(3) 
47(3) 
35(2) 
37(2) 
31(2) 
32(2) 
35(2) 
25(2) 
30(2) 
27(2) 
58(12) 
101(18) 
52(7) 
41(9) 
73(14) 
54(8) 
38(9) 
45(9) 
40(7) 
61(11) 
156(26) 
74(9) 
60(11) 
42(10) 
51(7) 
37(9) 
36(9) 

ÏÏ22-

38(1) 
34(1) 
37(1) 
37(1) 
33(1) 
37(1) 
53(3) 
55(3) 
32(2) 
35(2) 
35(2) 
34(2) 
40(2) 
38(2) 
42(2) 
37(2) 
45(12) 
148(23) 
58(8) 
52(10) 
54(12) 
44(7) 
30(9) 
46(11) 
100(11) 
63(13) 
173(29) 
75(9) 
49(11) 
67(12) 
65(8) 
38(10) 
36(9) 

%3-

68(1) 
76(1) 
39(1) 
41(1) 
38(1) 
41(1) 
91(4) 
60(3) 
79(3) 
43(2) 
43(2) 
44(2) 
36(2) 
34(2) 
42(2) 
34(2) 
92(16) 
44(12) 
53(7) 
41(9) 

132(20) 
124(12) 
47(10) 
49(10) 
59(8) 
48(10) 

112(21) 
75(9) 
50(10) 
54(10) 
44(7) 
50(10) 
38(9) 

:l2-

2(1) 
0 ( 0 )  

-2(1) 
-6(1) 
0(0) 
3(1) 
5(2) 

-6(2) 
1(2) 
3(2) 
2 ( 2 )  
0 ( 2 )  

-7(2) 
-1(2) 
-2(2) 

2 ( 2 )  
19(10) 
58(17) 
18(6) 
5(8) 

25(11) 
19(6) 
11(7) 
13(8) 
-5(7) 
16(10) 

129(24) 
32(7) 

-12(9) 
-2(9) 
-5(6) 
5(7) 

-2(7) 

2l3-

33(1) 
38(1) 
20(1) 
22(1) 
17(1) 
18(1) 
54(3) 
7(2) 

29(2) 
21(2) 
2 0 ( 2 )  
2 2 ( 2 )  
19(2) 
17(2) 
2 0 ( 2 )  
16(2) 
21(12) 
34(12) 
29(6) 
23(8) 
83(15) 
61(8) 
15(8) 
25(8) 
24(6) 
30(9) 

102(21) 
54(8) 
35(9) 
33(9) 
32(6) 
2 2 ( 8 )  
13(7) 

-^23-

11(1) 
0 ( 0 )  

-3(1) 
-6(1) 

0 ( 0 )  
7(1) 

19(3) 
-5(2) 

6 ( 2 )  
9(2) 
7(2) 
1(2) 

-6(2) 
-3(2) 
3(2) 
2 ( 2 )  

-16(11) 
-10(13) 
12(6) 
19(8) 
40(13) 
38(8) 
19(7) 
24(8) 
29(7) 
7(9) 

73(21) 
20(7) 
•16(8) 
-7(9) 
-9(6) 
8(8) 
7(7) 

^ The form of the anisotropic thermal factor is 

exp[-2*2(Uiih2a*2+U22k2b*2+U22l2c*2+2Ui2hka*b*+2Ui2hla*c*+ 

2U23klb*c*)]. 

Estimated standard deviations in given in parentheses 
for the least significant digit. 
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Table 8.18. (Continued) 

ATOM U 
11-

U 22- U 33- U 12- U 13- U 23-

061 50(7) 35(6) 54(7) -2(5) 35(6) 
C71 28(8) 56(11) 48(10) -3(8) 13(8) 
C72 42(10) 53(11) 54(10) -4(8) 23(9) 
071 39(6) 64(8) 49(7) -5(6) 24(6) 
C81 46(11) 53(11) 60(11) -13(9) 29(10) 
C82 26(1) 396(48) 235(27) 23(19) 2(14) 
081 30(6) 40(6) 40(6) -3(5) 14(5) 
01 71(8) 40(7) 96(10) 3(6) 56(8) 
02 66(10) 157(17) 167(17) 25(10) 87(12) 
03 201(24) 66(12) 198(22) -6(13) 139(21) 
04 42(8) 228(22) 114(13) 55(11) 40(9) 
05 36(7) 69(9) 76(9) -15(7) -7(7) 
06 58(9) 98(12) 137(14) -15(9) 42(10) 
07 109(13) 78(10) 51(8) 20(9) 19(9) 
08 61(9) 126(13) 39(7) -33(9) 9(6) 
010 86(14) 111(17) 185(24) 16(13) 78(16) 
0111 33(12) 98(19) 53(14) -13(11) 3(10) 
012 96(0) 136(0) 116(0) 4(0) -11(0) 

0(5) 
5(9) 
9(9) 
8 ( 6 )  

-26(9) 
-264(31) 
-8(5) 
10(7) 
83(14) 

-12(13) 
122(15) 
-32(8) 
-19(11) 
18(8) 
-4(8) 
35(17) 

-18(12) 
-10(0) 
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Table 8.19. Refined bond distances for 
Cd^ Q(SCHgCHgOH)1 6(CIO4)4•BHgO 

ATOMS DIST(A) ATOMS DIST(A) 

Cdl - SI 2.568(5) Cd6 - Cd4 4.24 
Cdl - 32 2.595(4) Cd6' - Cd4' 4.68 
Cdl - S3 2.567(4) SI - Cll 1.82(2) 
Cdl - Oil 2.49(1) Cll - C12 1.39(3) 
Cdl - 021 2.45(1) C12 - Oil 1.41(3) 
Cdl - 031 2.37(1) S2 - C21 1.86(2) 
Cd2 - SI 2.491(5) C21 - C22 1.47(3) 
Cd2 - S4 2.550(4) C22 - 021 1.42(2) 
Cd3 - S5 2.549(4) S3 - C31 1.85(2) 
Cd3 - S6 2.578(4) C31 - C32 1.52(2) 
Cd3 - 37 2.562(4) C32 - 031 1.45(2) 
Cd3 - 051 2.40(1) S4 - C41 1.85(2) 
Cd3 - 061 2.47(1) C41 - C42 1.44(3) 
Cd3 - 071 2.47(1) C42 - 041 1.33(3) 
Cd4 - S2 2.485(4) S5 - C51 1.83(2) 
Cd4 - S4 2.576(4) C51 - C52 1.57(3) 
Cd4 - S5 2.496(4) C52 - 051 1.37(2) 
Cd4 - S8 2.824(4) S6 - C61 1.85(2) 
Cd4 - 041 2.41(1) C61 - C62 1.53(2) 
Cd5 - S6 2.507(4) C62 - 061 1.43(2) 
Cd5 - SB 2.548(4) S7 - C71 1.84(2) 
Cd6 - S3 2.504(4) C71 - C72 1.52(2) 
Cd6 - S4 2.767(4) C72 - 071 1.42(2) 
Cd6 - S7 2.520(4) SB - C81 1.83(2) 
Cd6 - SB 2.582(4) CBl - C82 1.31(3) 
Cd6 - 081 2.41(1) C82 - 081 1.31(3) 
Cdl - Cd2 4.05 Cll - 01 1.45(1) 
Cdl - Cd4' 4.28 Cll - o2 1.42(2) 
Cdl - Cd6 4.21 Cll - 03 1.44(2) 
Cd2 - Cd4 4.19 Cll - 04 1.42(2) 
Cd3 - Cd4 4.10 CI 2 - 05 1.44(1) 
Cd3 - Cd5 4.15 C12 - 06 1.43(2) 
Cd3 - Cd6 4.21 C12 - 07 1.42(2) 
Cd5 - Cd4 4.53 C12 - 08 1.47(1) 
Cd6 - Cd4' 4.70 
Cd6 - Cd2 4.53 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 



www.manaraa.com

231 

Table 8.20. Refined bond angles for 
Cd^ Q(SCHgCHgOH)(CIO4)^ * SHgO 

ATOMS ANGLE(°) ATOMS ANGLE(O) 

SI - Cdl - 32 107.1(1)* S3 - Cd6 ~ 34 91.3(1) 
SI - Cdl - S3 112.8(2) S3 - Cd6 — 37 113.2(1) 
SI - Cdl - Oil 74.7(3) S3 - Cd6 - 38 120.8(1) 
S2 - Cdl - S3 104.6(1) 33 - Cd6 - 081 99.5(3) 
32 - Cdl - 021 75.1(3) 34 - Cd6 - 37 88.2(1) 
S3 - Cdl - 031 78.2(3) S4 - Cd6 - 38 90.1(1) 
Oil - Cdl - 021 88.8(4) 34 - Cd6 - 081 165.8(3) 
Oil - Cdl - 031 77.6(4) 37 - Cd6 - 38 126.0(1) 
021 - Cdl - 031 75.6(4) 37 - Cd6 - 081 96.0(3) 
SI - Cd2 - 31' 104.1(2) 38 - Cd6 - 081 76.5(2) 
SI - Cd2 - 34 118.7(1) Cdl - 31 - Cd2 106.5(2) 
SI - Cd2 - S4' 106.8(1) Cdl - 31 - Cll 97.1(7) 
S4 - Cd2 - S4' 102.7(2) Cd2 - 31 - Cll 101.8(7) 
S5 - Cd3 - S6 106.4(1) 31 - Cll - C12 116.2(17) 
S5 - Cd3 - 37 110.4(1) Cll - C12 - Oil 115.7(21) 
S5 - Cd3 - 051 78.3(3) C12 - Oil - Cdl 116.6(12) 
S6 - Cd3 - 37 110.4(1) Cdl - 32 - Cd4 114.8(2) 
S6 - Cd3 - 061 75.1(3) Cdl - 32 - C21 100.6(5) 
37 - Cd3 - 071 75.6(3) Cd4 - 32 - C21 107.4(5) 
051 - Cd3 - 061 77.5(4) 32 - C21 - C22 112.3(13) 
051 - Cd3 - 071 80.5(4) C21 - C22 - 021 110.4(15) 
061 - Cd3 - 071 80.5(4) C22 - 021 - Cdl 109.1(12) 
S2 - Cd4 - 34 124.4(1) Cdl - S3 - Cd6 112.0(1) 
32 - Cd4 - 35 114.1(1) Cdl - 33 - C31 94.5(5) 
S2 - Cd4 - 38 88.9(1) Cd6 - S3 - C31 103.8(5) 
S2 - Cd4 - 041 97.8(3) S3 - C31 - C32 109.5(11) 
S4 - Cd4 - 35 121.6(1) C31 - C32 - 031 110.4(13) 
S4 - Cd4 - 38 90.7(1) C32 - 031 - Cdl 115.9(9) 
S4 - Cd4 - 041 75.4(3) Cd2 - 34 - Cd4 109.5(1) 
S5 - Cd4 - 38 89.5(1) Cd2 - 34 - Cd6 116.6(2) 
S5 - Cd4 - 041 98.9(3) Cd4 - 34 - Cd6 122.2(2) 
S8 - Cd4 - 041 166.1(3) Cd2 - 34 - C41 104.1(6) 
S6 - CdS - 36' 110.8(2) Cd4 - 34 - C41 101.6(6) 
S6 - Cd5 - 38 115.3(1) Cd6 - 34 - C41 99.3(6) 
S6 - Cd5 - 38' 105.8(1) 34 - C41 - C42 114.5(16) 
SB - Cd5 - 38' 104.0(2) C41 - C42 - 041 119.2(24) 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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Table 8.20. (Continued) 

ATOMS ANGLE(°) ATOMS ANGLE(°) 

C42 - 041 - Cd4 118.3(15) 01 - Cil - 02 110.3(10) 
Cd3 - S5 - Cd4 108.7(1) 01 - Cil - 03 108.2(10) 
Cd3 - S5 - C51 96.9(6) 01 - cil - 04 110.9(10) 
Cd4 - S5 — C51 107.0(6) 02 - cil - 03 112.8(13) 
S5 - C51 - C52 112.1(12) 02 - cil - 04 109.0(11) 
C51 - C52 - 051 108.7(13) 03 - cil - 04 105.7(13) 
C52 - 051 - Cd3 115.5(9) 05 - C12 - 06 108.9(9) 
Cd3 - S6 - Cd5 109.0(2) 05 - C12 - 07 110.1(9) 
Cd3 - S6 - C61 94.3(5) 05 - C12 - 08 108.5(8) 
Cd5 - S6 - C61 103.8(5) 06 - C12 - 07 109.0(10) 
S6 - C61 - C62 110.3(10) 06 - C12 - 08 109.0(10) 
C61 - C62 - 061 109.7(12) 07 - C12 - 08 111.4(9) 
C62 — 061 - Cd3 118.0(8) 
Cd3 - S7 - Cd6 111.7(1) 
Cd3 - S7 - C71 101.3(6) 
Cd6 - S7 - C71 108.0(5) 
S7 - C71 - C72 112.5(11) 
C71 - C72 - 071 107.7(13) 
C72 - 071 - Cd3 110.1(9) 
Cd4 - S8 - Cd5 114.7(1) 
Cd4 - SB - Cd6 120.2(1) 
Cd5 - SB - Cd6 111.4(1) 
Cd4 - SB - CBl 103.4(6) 
Cd5 - SB - CBl 104.8(6) 
Cd6 - SB - CBl 99.4(6) 
SB - CBl - C82 116.9(15) 
C81 - CB2 - OBI 132.0(26) 
082 - 081 - Cd6 113.4(9) 
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of deviation from this high symmetry is directly related to 

the degree of hydration. No crystals of the dehydrated form 

of this salt were found with sufficient quality for data 

collection, so there is no crystallographic information to 

substantiate this claim. It is clear, however, that the 

environments of the the pseudo-four-fold related cadmiums are 

different. This is particularly true in their hydrogen 

bonding coordination to the perchlorates and water molecules, 

as described above and illustrated in Figure 5.7. 

There are 8 water sites per molecule, but the assigned 

occupancies of the four independent water molecules 09, 010, 

0111 and 012 sum to 5.5 per cation. This explains why the 

elemental analysis produced the formulation of this complex as 

a tetrahydrate. Approximately half of the water is evidently 

lost as the crystals are stored at room temperature. 

The structural data lend some credence to the above 

mentioned mechanism suggested by Haberkorn whereby the four 

coordinate and five coordinate cadmium atoms exchange 

coordinations. This mechanism for site exchange between Cd2 

and Cd4 consists of breakage of the Cd4-041 bond and formation 

of a bond between Cd2 and 041 (see Figure 8.4). Similarly, 

site exchange between Cd5 and Cd6 occurs via 081. The thermal 

ellipsoids for C42 and C82 are significantly larger than those 

for any other carbon atom in the molecule. Furthermore, for 

each of the eight Independent mercaptoethanol units in the 

molecule, one can define a torsional angle defined by 
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Onl-Cn2-Cnl-Sn. The average value of this angle for 

n=l,2,3,5,6 and 7 is 60.4°(1.8). The value for n=4 is 38.4° 

and for n=8 is 16.7°, deviations of 12a and 24a, respectively 

from the average value for the others. These deviations may 

reflect a strain in the five membered rings depicted in Figure 

8.4 which is relieved by predominantly perpendicular movements 

of C42 and C82 in the solid and by breakage of the Cd-0 bonds 

in solution. 

Another Interesting characteristic of this structure is 

the presence of adamantane-like clusters similar to those 

45-47 
present in the protein metallothlonen. Figure 8.5 shows 

two representative units in this complex. 

A stereoscopic unit cell drawing of this structure is 

shown in Figure 8.6. This Includes only the cadmium atoms and 

perchlorate groups and is intended to indicate the 

coordination of the nearly tetrahedral cationlc units with the 

anionic perchlorates. 

One final interesting aspect to this structure is that 

the perchlorate groups exhibit no extreme tendency to become 

rotatlonally disordered (as is often the case). This seems to 

be in part the result of the low temperature of the crystal 

during data collection. It also, however. Indicates that 

there are reasonably strong interactions between the 

perchlorate groups and the hydroxy1 oxygens. 
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Figure 8.4. Structure of the 4 and 5 coordinate cadmium 

sites, including the mercaptoethanol units 

proposed to be involved in the site exchange. 

Thermal ellipsoids are scaled to enclose 50% of 

the electron density. 
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Figure 8.5. The two adamantôme-like Cd-S fragments in 

Cdio(SCH2CH20H)i6(C10^)^*8H20. Thermal ellipsoids are 

scaled to enclose 50% of the electron density. 
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mmë 

Figure 8.6. Stereoscopic unit cell diagram of CdiQfSCHgCHg-

showing the interaction between 

the cationic molecules and the perchlorate 

anions. Only the cadmium atoms and perchlorate 

groups are included in the diagram. 
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8.4. Structure determinations of ^2'^^2^^6 

and (ClHgNCgHigCl)gHgCl^(CgHg)"HgO 

8.4.1. Introduction 

Crystals of (I) (ClHgNCgH^^j^^^^2"^2^^6 (H) (ClHgNCg-

*^12^^^ 2^^^^4^^6^6^'^2*^ were synthesized in Dr. Larock's 

research group (Department of Chemistry, Iowa State Univer­

sity). Their interest was in the unusual organomercurate 

present. Of particular interest was the geometry about the 

C=C double bonds. The structural results presented here 

reveal, however, very interesting and uncommon mercury-

chlorine bridging networks. 

8.4.2. Collection and reduction of X-rav data 

Single crystals of (I) and (II) - see Figures 5.10 and 

8.7, respectively, for ORTEP drawings of the final molecular 

structures - with approximate dimensions 0.22 x 0.24 x 0.26 mm 

and 0.10 x 0.12 x 0.42 mm, respectively, were adhered to glass 

fibers and mounted on goniometer heads. Data were collected 

at room temperature for both crystals on a four-circle 

diffractometer designed and built at Ames Laboratory using 

monochromatic MoK^ radiation.^® Several w-oscillation 

photographs at various $ settings were taken for each crystal. 

From these photographs, the settings for 14 and 12 

reflections, respectively, were obtained and input into an 
OQ 

automatic indexing algorithm. The resulting reduced cells 
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Figure 8.7. Structure of (ClHgNCgHj^2Cl)2HgCl^(CgHg)'H2O. The solvent 

and water molecules are not included. Thermal ellipsoids 

are scaled to enclose 50% of the electron density. 
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and reduced cell scalars revealed primitive orthorhombic 

symmetry for (I) and C-centered monoclinic symmetry for (II). 

Data were collected from the octants h,k,l and -h,-k,l for 

both crystals. The intensities of three axial standard 

reflections were measured every 75 reflections during data 

collection to monitor decay. Significant decay was observed 

for both (I) and (II) (see Tables 8.21 and 8.22). The final 

unit cell parameters and standard deviations were calculated 

from the tuned angles for 12(1) and 18(11) near-axial 

reflections (20° <= 20 <= 36°). For (I) the systematic 

absences Okl (k=2n+l), OkO (k=2n+l) and hkO (h=2n+l) narrowed 

the space group choices to the centrosymmetric group Pnma and 

its three noncentrosymmetric subgroups P2^ma, Pn2^a and Pnm2^. 

Statistical evidence^^ favored the centrosymmetric choice but 

the results were somewhat ambiguous. For (II) systematic 

absences of hkl (h+k=2n+l) and hOl (l=2n+l) uniquely define 

the space group as the centrosymmetric group C2/c. Decay 

corrections were made based upon the observed decrease in 

standard reflection intensities and empirical absorption 

corrections were made based on an approximation to the 

intensity distribution as a function of the orientation of the 

crystal. All data were corrected for Lp effects and 

appropriately averaged (only one octant of data was retained 

for (I) due to its excessive decay). All pertinent 

information relative to the unit cells and data collection is 

compiled in Tables 8.21 and 8.22. 
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Table 8.21. Crystal Data for (ClNC^Hj^^Cl) 

Formula (Mol. Wt.) 

a, A 

b 

c 

P 

Y 

V ,  

Z 

Crystal System 

Space Group 

Radiation, X, A 

3 

-1 

Hg4CliON2CioH2o(1325.17) 

13.186(2) 

18.501(2) 

11.189(1) 

90.00 

90.00 

90.00 

2729.8(5) 

4 

orthorhombic 

Pcalc'd' 9/cm 

Abs. Coeff., M, cm 

Temperature, K 

20 Range 

No. of Refis Collected 

No. of Observed Refis 

No. of Variables 

R (averaging), % 

R (refinement), % 

(ref inement), % 

Intensity (I) vs. Reflection Number (X) 

2253.3 - 0.3346X + O.OOOOBX^ = I 

Pn2^a 

MoK 0.70964 oti ' 

3.23 

125.75 

295 

0° <= 20 <= 50° 

2746 

1979 

174 

0 

4.9 

7.1 
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Table 8.22. Crystal Data for (ClNCgH3^2Cl)2HgCl4(CgHg) •H2O 

Formula (Mol. Wt.) 

a, A 

b 

c 

P 

Y 

V, *3 

Z 

Crystal System 

Space Group 

Radiation, X, A 

Pcalc'd' 

Abs. Coeff., u, cm~^ 

Temperature, K 

20 Range 

No. of Refis Collected 

No. of Observed Refis 

No. of Variables 

R (averaging), % 

R (ref inement), % 

Rpq ( ref inement ), % 

Intensity (I) vs. Reflection Number (X) 

10064.2 - 1.6010X + 0.00026X2 = I 

HggClgOiNgCigHgz (1177.86) 

27.679(4) 

8.140(1) 

14.164(2) 

90.00 

97.17(2) 

90.00 

3166.5(8) 

4 

monoclinic 

C2/C 

MoK^^, 0.70964 

2.47 

115.92 

295 

0° <= 20 (= 50° 

3477 

2439 

147 

5.0 

6 . 1  

7.3 
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8.4.3. Solution and refinement of structures 

As mentioned above, the true space group for (I) was not 

known at the end of data collection. Attempts to find an 

acceptable initial model from the Patterson map, assuming the 

space group to be Pnma, failed. Using the program ALCAMPS and 

a subsequent superposition map with the space group Pn2^a, a 

solution was obtained. This structure contains two 

crystallographically independent cationic moieties with one 

unique HggCl^^ anion. The cations appear to be approximately 

related by a pseudo- (i.e., noncrystallographic) mirror 

operation. All mercury positions and some of the chlorine 

positions were obtained from ALCAMPS and the remaining 

nonhydrogen atoms were located from calculated electron 

32 density maps. All positional and thermal parameters were 

initially refined using a block-diagonal matrix least-squares 

procedure.All of the mercury and chlorine atoms were 

allowed to refine anisotropically. Attempts were made to 

refine the nitrogen and carbon atoms anisotropically, but they 

failed, presumably due to correlation between the independent 

cations. All ethylenic hydrogen atom positions were 

calculated but not varied. A final full-matrix refinement 

converged at R = 4.9%. 

All atoms in the cation and the anion for (II) were 

readily identified by applying the program ALCAMPS to a map 

which resulted from a Patterson superposition. The benzene 

solvent and an apparent water molecule were then located in a 
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subsequent electron density map. As in (I), all positional 

and thermal parameters were initially refined using a 

block-matrix least-squares procedure. Isotropic refinement 

converged at R = 15.8%. All nonhydrogen atoms were allowed to 

refine anisotropically and all ethylenic and methylenic 

hydrogen atom positions were calculated but not refined. A 

final full-matrix refinement converged at R = 6.1%. 

33 
The atomic scattering factors for mercury and chorine 

were modified for anomalous dispersion effects^^ in both 

structures. 

Tables 8.23 (I) and 8.24 (II) list the positional 

parameters for all nonhydrogen atoms and anisotropic thermal 

parameters are given in Tables 8.25 (I) and 8.26 (II). 

8.4.4. Discussion of structures 

The structural chemistry of mercuric halides is 

diverse , including the existence of both Hg2Clg 

and HgCl^~~ ^3,54 moieties. The structures reported here are 

noteworthy in that excess HgClg and HCl complex with the 

organomercury compounds strongly enough to produce interesting 

mercury-chlorine complexes with highly distorted anions. 

Although the basic framework in both of these structures 

is conveniently discussed in terms of discrete cationic and 

anionic species, it should be noted that the most complete 

description would be in terms of continuous networks of 

mercury and chlorine atoms with the organic constituents 
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Table 8.23. Refined Atomic Coordinates^ (xlO*) for 
( ClHgNCgHj 2^^ ) 

ATOM X Y Z 

Hgl 4132(1)* 7600(0) 5750(1) 
Hg2 3473(1) 5681(1) 4286(1) 
Hg3 1286(1) 8274(2) 5890(1) 
Hg4 3687(1) 9982(2) 5836(1) 
Cll 4914(9) 7216(7) 7490(10) 
C12 3615(11) 8380(8) 4241(10) 
CIS 5201(7) 6611(6) 4246(8) 
C14 2341(8) 6787(6) 5759(9) 
CIS 4088(13) 5032(12) 5877(14) 
C16 2636(11) 6110(10) 2595(10) 
CI 7 2464(8) 8619(8) 7325(10) 
C18 -1874(9) 8428(9) 4220(12) 
C19 4917(9) 9691(9) 7225(13) 
Clio 490(8) 10212(7) 4213(10) 
N1 754(25) 8449(21) 3461(29) 
Cll 130(27) 8203(21) 4670(33) 
C12 -711(27) 8449(21) 5027(37) 
CIS 342(25) 7926(18) 3389(30) 
C14 947(42) 8436(38) 2683(35) 
CIS 65(50 6693(49) 3977(53) 
N2 3180(24) 11310(17) 3454(29) 
C21 2521(24) 10254(18) 4660(29) 
C22 1627(20) 10096(15) 5060(26) 
C23 2726(26) 10565(20) 3411(35) 
C24 3428(36) 10067(24) 2634(39) 
C25 2574(40 11840(22) 4079(47) 

^ Atomic coordinates are given as fractions of the unit 
cell. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 8.24. Refined Atomic Coordinates^ (xio*) for 
(ClHgNCgH^2Cl)2^9014(CgHg).HgO 

ATOM X Y Z 

Hgl 5000 6966(1)* 7500 
Hg2 4175(3) 8603(8) 5211(5) 
Cll 5208(2) 9129(5) 6219(3) 
C12 4204(2) 5989(6) 6931(3) 
C13 4398(2) 6348(5) 4360(3) 
C14 3541(3) 1556(8) 7539(4) 
N 4437(3) 2797(18) 5579(11) 
CI 3912(6) 507(21) 5957(12) 
C2 3767(7) 132(21) 6766(13) 
C3 3910(7) 2225(21) 5568(13) 
C4 3635(7) 2406(23) 4567(13) 
C5 3093(8) 2100(33) 4528(16) 
C6 2824(10) 2323(43) 3554(21) 
C7 2444(21) 2460(72) 897(25) 
C8 2843(15) 3052(45) 647(35) 
C9 2088(14) 1806(45) 278(41) 
01 5000(0) 7681(27) 2500(0) 

^ Atomic coordinates are given as fractions of the unit 
cell. 

* Estimated standard deviations for the refined 
coordinates are given in parentheses for the least significant 
digit. 
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Table 8.25. Anisotropic Thermal Parameters* (xlO^) for 
(ClHgNCgHigCl)gHgaCl^ 

ATOM U 
11-

U 22- U 33- U 12- U 13- U 23-

Hgl 
Hg2 
Hg3 
Hg4 
Cll 
C12 
C13 
C14 
CIS 
C16 
C17 
C18 
C19 
Clio 

Nl^ 
Cll 
C12 
C13 
C14 
CIS 
N2 
C21 
C22 
C23 
C24 
C2S 

53(1) 
53(1) 
47(1) 
44(1) 
55(7) 
99(10) 
37(5) 
54(6) 

107(11) 
6 8 ( 8 )  
46(7) 
47(7) 
55(7) 
51(6) 

2.7(5) 
2.8(7) 
3.4(7) 
2.7(7) 
5.0(10) 
6.3(13) 
3.2(6) 
1.8(5) 
1.8(5) 
2.7(6) 
4.3(8) 
4.3(9) 

67(1) 
80(1) 
46(1) 
53(1) 
73(10) 
76(9) 
48(6) 
40(6) 
123(14) 
123(14) 
83(9) 
97(11) 
82(9) 
69(8) 

36(1) 
37(1) 
36(1) 
35(1) 
36(8) 
49(7) 
32(6) 
27(5) 
65(9) 
28(7) 
37(6) 
70(8) 
58(7) 
48(7) 

11(1) 
12(1) 
-2(1) 
-3(1) 
18(6) 
39(8) 
11(5) 
2(5) 

61(11) 
38(9) 
-2(6) 
9(7) 
-6(7) 
9(6) 

-4(1) 
-3(1) 
- 8 ( 1 )  
-8(1) 
16(5) 
1 2 ( 6 )  
4(4) 
-6(4) 
1 8 ( 8 )  
-8(5) 
-13(5) 
-8(6) 
•18(6) 
-4(5) 

10(1) 
6(1) 
2(1) 

10(1) 
-8(5) 
20(7) 
-7(5) 
-1(4) 
54(10) 
•14(7) 
-2(6) 
29(8) 
21(7) 
-7(6) 

* The form of the anisotropic thermal factor is 

exp[-2*2(Uiih2a*2+U22k2b*2+U23l2c*2+2Ui2hka*b*+2Ui2hla*c*+ 

2U23klb*c*)]. 

^ All nitrogen and carbon atoms were refined 
isotropically. The thermal parameters are given as B's in 
units of A . 

* Estimated standard deviations are given in parentheses 
for the least significant digit. 
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Table 8.26. Anisotropic Thermal Parameters* (xlO^) for 
(ClNCgHigCl)2HgCl4(CgHe)•HgO 

ATOM U 11- U 22- U 33- U 12- U 13- U 23-

Hgl 
Hg2 
Cll 
C12 
C13 
C14 
N 
CI 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
01 

77(1) 
75(1) 
74(3) 
79(3) 
90(4) 
118(5) 
86(11) 
47(10) 
61(11) 
57(11) 
70(13) 
64(14) 
8 0 ( 1 8 )  

129(31) 
96(26) 
106(27) 
179(28) 

68(1) 
41(1) 
49(2) 
46(2) 
45(2) 
92(4) 
67(9) 
51(10) 
37(9) 
38(9) 
46(10) 

109(19) 
140(26) 
231(48) 
108(23) 
109(23) 
68(15) 

39(1) 
49(1) 
35(2) 
53(3) 
49(3) 
58(3) 
73(9) 
43(10) 
62(12) 
51(10) 
53(11) 
66(14) 

104(21) 
81(22) 

140(34) 
154(37) 
58(14) 

0 ( 0 )  
3(1) 
1(2) 
-5(2) 
-2(2) 
18(4) 
-2(8) 
3(8) 
5(9) 
1(8) 
6(9) 
25(13) 
12(18) 
85(34) 
26 (20 )  
20 (20 )  

0 ( 0 )  

-1(1) 
2(1) 
8 ( 2 )  

-5(2) 
12(3) 
21(3) 
-5(8) 
7(8) 
6(9) 
0(9) 

-3(10) 
-28(11) 
• 1 6 ( 1 6 )  
39(25) 
•16(23) 
44(29) 
-4(14) 

0 ( 0 )  
-3(1) 
5(2) 
-3(2) 
-4(2) 
-8(3) 
-5(7) 
4(8) 
-2(8) 
-2(8) 
2(8) 

•11(13) 
18(28) 
18(28) 
33(23) 
40(24) 

0 ( 0 )  

^ The form of the anisotropic thermal factor is 

exp[-2w2(Uiih2a*2+U22k^b*2+U22l2c*2+Ui2hka*b*+2Ui2hla*c*+ 

ZUggklb^c*)]. 

* Estimated standard deviations are given in parentheses 
for the least significant digit. 
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contributing only secondarily to the crystal packing and 

coordination. Figures 8.7 (I) and 8.8 (II) show stereoscopic 

views of the unit cells illustrating this packing and 

coordination. 

48 
According to the convention devised by Grdenic , all of 

the mercury atoms in both structures have characteristic 

coordination numbers of two. The effective coordination 

numbers, on the other hand, are in most cases higher, ranging 

from two to five. Mercury, in the presence of chlorine, has a 

strong tendency to expand its coordination sphere by taking on 

additional ligands, but the arrangements observed here are 

unusual. A discussion of the coordinations of the various 

types of mercury atoms follows. 

HggClg^ anion: 

2 -
At first glance, the geometry of the Hg2Clg group 

appears to be that of a distorted edge-shared bitetrahedron as 

49 50 
reported by Kistenmacher et al. , Bats et al. , Goggin et 

al.^^ and Zhilyaeva et al.^^, with effective coordination 

numbers of four for both mercury atoms. (The effective 

coordination number is the number of neighbors within a 

distance that is the sum of the van der Waals radii of the 

2+ -
interacting atoms; in the case of Hg and CI this distance 

is 3.30 A.) The group can, in fact, be reasonably 

well-described by two nearly perpendicular interacting planes, 

one containing Hgl,Hg2,Cll,C12,C15,C16 and the other 
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Figure 8.8. Stereoscopic unit cell diagram of (ClHgNCgH^gCl)gHggClg, 

showing the interaction between the organomercurate and 

HgjCle^" anion. 
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Figure 8.9. Stereoscopic unit cell diagram of (ClHgNCgH^^gCl>2" 

HgCl^(CgH^)'H^O^ showing the crystal packing. Thermal 

ellipsoids are scaled to enclose 50% of the electron 

density. 
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containing Hgl,Hg2,C13rC14. These least-squares planes have 

mean-square deviations of 0.0147 A and 0.0074 A, respectively, 

and an interplanar angle of 94.1°. 

On closer examination, however, one sees that the 

effective coordination number for Hgl and for Hg2 is five, and 

that the geometry is more like the joining of two square 

pyramids sharing one of the side edges, with C13 forming one 

apex and C14 the other (see Figure 8.9). Here, the bond 

distances Hgl-CI7 and Hg2-C19 are 3.391(9) A and 3.274(9) A, 

respectively (bond distances and angles are given in Tables 

8.27 and 8.28). The former is only slightly beyond the range 

of effective coordination while the latter is within the 

range. The least squares planes containing: (1) 

Hgl,Cll,C12,C13,C17 and Hg2,C15,C16,C14,CL9 are 3.4° from 

being parallel and C14 and C13 are 8.2° and 6.8° from the 

vertical through Hgl and Hg2, respectively. 

Furthermore, a comparison of Hg-Cl bond distances between 

49 
the reported results of Kistenmacher et al. (referred to 

here as III) and the present work (referred to as I) reveals 

significant differences. In both cases, there are two short 

Hg-Cl interactions (III; avg. distance = 2.375(5) A, I: avg. 

distance = 2.316 A) and two longer, bridging Hg-Cl 

interactions for each mercury atom. In (III) the bridging 

distances have an average value of 2.648(5) A, whereas in (I) 

the respective distances are significantly longer (2.809(9) -

3.021(9) A). This elongation of the mercury-chlorine bonds is 
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Figure 8.10. Structure of the HggCl^^" anion in (ClHgNCgH^g-

CllgHggCl^ showing the effective coordination 

about the mercury atoms. This coordination 

closely approximates the joining of two square 

pyramids on a common edge. 
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Table 8.27. Refined bond distances for (ClHgNC5H2^2^1^2^^2^^6 

ATOMS DISTANCE(A) 

Hg(l) - CKl) 2.32(1) 
Hg(l) - Cl(2) 2.32(1) 
Hg(l) - Cl(3) 2.86(1) 
Hg(l) - Cl(4) 2.80(1) 
Hg(3) - Cl(7) 2.32(1) 
Hg(3) - C(ll) 2.05(4) 
C(ll) - C(12) 1.26(5) 
C(ll) - C(13) 1.55(5) 
C(12) - Cl(8) 1.78(4) 
C(13) - C(14) 1.47(7) 
C(13) - N(l) 1.51(4) 
N(l) - C(15) 1.38(8) 
Hg(2) - Cl(6) 2.33(1) 
Hg(2) - Cl(5) 2.30(2) 
Hg(2) - Cl(3) 2.85(1) 
Hg(2) - Cl(4) 3.02(1) 
Hg(4) - Cl(9) 2.31(1) 
Hg{4) - C(21) 2.09(3) 
C(21) - C(22) 1.29(4) 
C(21) - C(23) 1.53(5) 
C(22) - Cl(lO) 1.79(3) 
C(23) - C(24) 1.57(6) 
C(23) - N(2) 1.50(5) 
N(2) - C(25) 1.44(6) 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 8.28. Refined bond angles for (ClHgNC5Hj^2^1^2^^2^^6 

ATOMS ANGLE(Q) 

Cll - Hgl - C12 158.8(5)* 
Cll - Hgl - C13 94.5(4) 
Cll - Hgl - C14 102.0(4) 
C12 - Hgl - C13 96.6(4) 
C12 - Hgl - C14 95.1(4) 
C13 - Hgl - C14 94.3(3) 
C17 - Hg3 - Cll 167.1(12) 
Hg3 - Cll - C12 115(3) 
Hg3 - Cll - C13 120(2) 
C12 - Cll - C13 126(3) 
Cll - C12 - C18 124(3) 
Cll - C13 - C14 113(3) 
Cll - C13 - N1 109(3) 
C14 - C13 - N1 116(3) 
C13 - N1 - C15 112(4) 
C16 - Hg2 - CIS 167.3(7) 
C16 - Hg2 - C14 88.8(4) 
C16 - Hg2 - C13 99.2(5) 
CIS - Hg2 - C14 96.1(5) 
C15 - Hg2 - C13 92.6(5) 
C19 - Hg4 - C21 176.9(9) 
Hg4 - C21 - C22 113(2) 
Hg4 - C21 - C23 122(2) 
C22 - C21 - C23 126(3) 
C21 - C22 - Clio 124(2) 
C21 - C23 - C24 113(3) 
C21 - C23 - N2 113(3) 
C24 - C23 - N2 109(3) 
C23 - N2 - C25 117(3) 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 
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apparently due to the additional coordination of Hgl and Hg2 

with C17 and C19, respectively. One will notice that the 

delocalization of the Hgl-C13, Hgl-CI4^ Hg2-C13 and Hg2-C14 

bonds has evidently given rise to a shortening of the Hgl-Cll, 

Hgl-C12, Hg2-C15 and Hg2-C16 bonds and a straightening out of 

the Cll-Hgl-C12 and C15-Hg2-C16 bond angles (III: angle 

(Cl-Hg-Cl) - 132.2°, I: angle(Cl(l)-Hg(l)-Cl(2) = 158.8° and 

angle(Cl(5)-Hg(2)-Cl(6) = 167.3°). 

HgCl^^ anion: 

The geometry of the HgCl^^ anion in (II) is roughly 

tetrahedral with Hgl lying on a two-fold axis and with the 

angle between the least-squares planes Cll,Hgl,Cll' and 

C12,Hgl,C12' being 86.6°. Once again there are significant 

deviations from the previously reported occurrences of this 

53 54 
anion. Ferguson et al. and Mason et al. report structures 

containing this anion in a much more regular geometry with 

bond distance ranges of 2.48 to 2.51 A and 2.441 to 2.523 A, 

respectively, and bond angle ranges of 98 to 119° and 102 to 

122°, respectively. Our observed bond distances of 2.387(5) 

and 2.643(4) A and bond angle range of 96.5(2) to 141.1(2)° 

are evidences of the perturbations of the Hgl-Cll bond through 

coordination of Cll with Hg2. (Bond distances and angles are 

given in Tables 8.29 and 8.30, respectively.) Note that Cll 

is coordinated twice to Hg2 with distances of 3.06 and 3.36 

A, while C12 is coordinated only once to Hg2 with a distance 
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Table 8.29. Refined bond distances for 
(ClHgN^H^gCl)gHgCl^()'HgO 

ATOMS DISTANCE(A) 

Hgl - Cll 2.643(4) 
Hgl - C12 2.387(5) 
Hg2 - C13 2.322(5) 
Hg2 - CI 2.06(2) 
CI - C2 1.30(2) 
CI - C3 1.50(2) 
C2 - C14 1.76(2) 
C3 - N 1.53(2) 
C3 - C4 1.53(3) 
C4 - C5 1.51(3) 
C5 - C6 1.49(4) 
C7 - C8 1.29(7) 
C7 - C9 1.35(7) 
C8 - C9 1.35(7) 

* Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 8.30. Refined bond angles for 

(ClNCgH22^^ ̂ 2^^^^4 ̂ ̂ 6^6 ̂ * ̂ 2^ 

ATOMS ANGLE(O) 

Cll Hgl - Cll 96.5(2) 
Cll - Hgl - C12 105.2(2) 
Cll - Hgl - C12 100.5(2) 
C12 - Hgl - C12 141.1(2) 
C13 - Hg2 - CI 174.6(5) 
Hg2 - CI - C2 116(1) 
Hg2 - CI - C3 120(1) 
C2 - CI - C3 124(2) 
CI - C2 - C14 125(1) 
CI - C3 - C4 114(1) 
CI - C3 - N 109(1) 
C4 - C3 - N 110(1) 
C3 - C4 - C5 113(2) 
C4 - C5 - C6 113(2) 

* Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digit. 

range of effective coordination between mercury and chlorine. 

Organomercurate cation (I); 

As mentioned before, the characteristic coordination 

numbers for Hg3 and Hg4 are two. The effective coordination 

number for Hg3, however, appears to be four with d(Hg3-C14) = 

3.073(10) A and d(Hg3-Cll) = 3.226(12) A. The corresponding 

interactions for Hg4 (recalling that the two cationic moieties 

are approximately related by a pseudo-mirror) Hg4 to C13 with 
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d(Hg4-C13)=3.360(10) A and Hg4 to C16 with d(Hg4-C16)= 

3.367(14) A are just beyond the range of effective 

coordination. 

Previously published structures containing organo-

mercurate cations similar to those discussed here. Halfpenny 

and Small^^ and Atwood et al.^^, report distances and angles 

about the mercury atom which are very similar to those found 

in this investigation. Halfpenney found bond distances of 

d(Hg-Cl)=2.326(6) A and d(Hg-C)=2.11(2) A and a bond angle of 

(C-Hg-Cl)=172.2(5)°. The bond distances and angle reported by 

Atwood are d(Hg-Cl)=2.317(5) A, d(Hg-C)=2.08(2) A and 

(C-Hg-Cl)=177.3(5)°. Our results for (ClHgNC5H^2Cl)2Hg2Clg 

show bond distances of (Hg3-C17)=2.32(l) A, 

d(Hg3-Cll)=2.05(4), d(Hg4-C19)=2.31(1) and d(Hg4-C21)=2.09(3) 

A, and bond angles of (Cll-Hg3-C17)=167.1(12)° and 

(C21-Hg4-C19)=176.9(9)°. Aside from the somewhat lower bond 

angle about Hg3 (possibly due to the increased coordination) 

these results are nearly identical to the previously reported 

results. 

Organomercurate cation (II); 

The characteristic coordination number of Hg2 in this 

structure is two, while the effective coordination number is 

four. The bond distances and angle about Hg2, d(Hg2-C13)= 

2.322(5) A, d(Hg-Cl)=2.06(2) A and (Cl-Hg2-C13)=174.6(5)°, are 

again nearly identical to the previously reported values. 
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9. APPENDIX B. OTHER STRUCTURES SOLVED 

During the past few years, as we have been developing new 

methods for solving very complex crystal structures in a 

routine manner - using ALCAMPS, for instance - we have joined 

in an ever increasing number of collaborative projects where 

resolving the atomic structures of a large variety of 

materials was of prime interest. Since a major portion of the 

research reported here has dealt with our developments in this 

area, I have naturally become involved in many of these 

projects. The crystal structures of five of these materials 

were discussed in some detail in Section 8, in order to 

illustrate the procedure used and to present some of the 

interesting structural features of those structures. For the 

record, though, a more complete list of structure 

determinations in which I have played a major role follows 

here. The names of all co-workers are included for each 

structure and the titles are included for those papers already 

published. 
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9.1. Structures Published 

1) "Crystal structure of a Pink Muscovite from Archer's Post, 

Kenya: Implications for Reverse Pleochroism in 

Dioctahedral Micas", S. M. Richardson and J. W. 

Richardson, American Mineralogist 67, 69-75 (1982). 

2) "Zur Metalierung von Benzylphosphine. II", H. P. Abicht, 

U. Baumeister, H. Hartung, K. Issleib, R. A. Jacobson, 

J. Richardson, S. M. Socol and J. G. Verkade, Z. Anorcr. 

All*. Chem. 494. 55-66 (1982). 

3) "Charge Transfer and Transition-Metal Cluster; Boron 

Bonding in the bet Superconducting Y(Rh^_^U2j.)^B^ 

System", R. N. Shelton, H. E. Horng, A. J. Bevelo, 

J. W. Richardson, Jr., R. A. Jacobson, S. D. Bader and 

H. C. Hamaker, Physical Review B 27, No. 11_(1983). 

4) "Superconductivity and Crystal Structure of a New Class of 

Ternary Transition Metal Phosphide TT'P (T=Zr,Nb,Ta and 

T'=Ru,Rh)", R. Mueller, R. N. Shelton, J. W. Richardson, 

Jr. and R. A. Jacobson, Journal of Less-Common Metals, 

92, 177-183 (1983). 
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5) "Crystal and Molecular Structure of Cdj^Q(SCH2CH20H) 

(C10^)^*8H20. Correlation with 113cd NMR Spectra of the 

Solid and Implications for Cadmium-Thiolate Ligation in 

Proteins", S. Lacelle, W. C. Stevens, D. M. Kurtz, Jr., 

J. W. Richardson, Jr. and R. A. Jacobson, (in press), 

Inorq. Chem. (1983). 

6) "Reactions of the ir-Thiophene Ligand in (Ti-C^H^S)Mn(CO) • 

Mechanistic Possibilities for Catalytic Hydrodesulfur-

ization", D. A. Lesch, J. W. Richardson, Jr., 

R. A. Jacobson and R. J. Angelici, submitted to J. Am. 

Chem. Soc. (1983). 

7) "Stereoelectronic Effects of Cyclization in Amino-

phosphine Systems: A structural, PES and NMR Study of 

Me2N0(0CH2)2CMe2 and CH2(CH2CH2)CMe". D. E. Schiff, 

J. W. Richardson, Jr., R. A. Jacobson, A. H. Cowley, 

J. Lasch and J.G. Verkade, in press, Inorcr. Chem. 

(1984). 
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9.2. Structures to be Published 

8) MgtCCHgCtCHglglOgCrgtHgOigtOgCCtCHglgligl; V. KatOViC, 

R. E. McCarley, J. W. Richardson, Jr., R. A. Jacobson. 

9) CgHgFetCOigtCSlPFg; J. W. Richardson, Jr. and R. A. 

Jacobson. 

10) Cu(N2CiiHg(0H)2)2Cl2'2H20 and Cu(N2C^^Hg(0H)2)2-

(N02)2'H20; S. J. Briggs, S. L. Wang, J. W. 

Richardson, Jr., W. P. Jensen and R. A. Jacobson. 

11) 3CdS0^'8H20; J. W. Richardson, Jr. and R. A. Jacobson. 

12) Bentazon; S02N2C^QH^^; L. Moss, J. W. Richardson, Jr. 

and R. A. Jacobson. 

13) HgAKPO^)^; L. Tilstra, J. W. Richardson, Jr. and R. A. 

Jacobson. 

14) (ClNCsHioHgCl)2Hg2Clg and (ClNCgH^2"^^^^~ 

H2O; S. Varaprath, J. W. Richardson, Jr., R. C. Laroclc 

and R. A. Jacobson. 
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10. APPENDIX C. PIKR 

10.1. Introduction 

The capacity to make accurate estimations of the 

positions of poorly resolved peaks in three-dimensional maps 

is an important requirement of this research. Our success in 

this area is, in fact, a key to the development of our 

computer-aided analysis of Patterson superposition maps. The 

computer program PIKR has been written to calculate accurate 

positions and heights for peak maxima in the three different 

types of maps we work with: Patterson, superposition and 

electron density (E.D.). 

Patterson maps are calculated as the Fourier 

transformation of the observed diffraction intensities. 

Superposition maps are maps which result from the "minimum" 

convolution of an unshifted Patterson map and an appropriately 

shifted copy of it. Knowledge of the positions of the peak 

maxima in these maps (Patterson and superposition) can lead 

directly to the solution of complex crystal structures (see 

Sections 3,4 and 5). A list containing the positions and 

heights of all peaks in Patterson and superposition maps is 

the major source of input for the program ALCAMPS. The 

accuracy of the procedure depends strongly on the accuracy of 

the peak picking. 

Once an initial (often partial) structural model has been 
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obtained, additional atoms present in the unit cell are 

obtained from electron density maps calculated as the Fourier 

transform of the structure factors of the measured 

reflections. The process of identifying additional atoms can 

be made automatic by having the computer locate the peak 

maxima and calculate interatomic distances and angles. 

Each of these maps consists of a set of numbers 

representing the calculated value of the appropriate function 

as calculated at discrete positions. Each map can be printed 

on output paper and/or stored on a computer disk in a form 

where the three-dimensional function is represented as an 

orthogonal three-dimensional grid with directions identified 

as across, down and sections. PIKR requires unit cell 

information along with information about the size of the map 

being analyzed. Additional information is needed for E.D. 

maps. Including the number of symmetry operations in the space 

group and the approximate composition of the sample material. 

Any program designed to handle all types of crystal-

lographically important maps must be able to handle non-

orthogonal symmetry in the maps. The printed map produced by 

the program FOUR is artificially represented as orthogonal, 

although, for most monoclinic and triclinic crystals the maps 

do not actually have right angles joining the cell axes. 

There is, then, a distortion produced by our representation of 

non-orthogonal systems as othogonal. The magnitude of this 

distortion is determined by the dot product of the 
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intersecting map vectors Ë and c. 

Programs previously used for peak analysis located peaks 

only to the nearest grid point. Typical maps have a 

resolution of approximately 0.25-0.33 A / grid point. This 

rather coarse resolution is too large for accurate 

calculations. PIKR, therefore, has been designed to proceed 

via the following three step process: (1) locate local maxima 

- grid positions which have intensities greater than or equal 

to those of all of their neighbors (note that the term "local 

maximum" will be used throughout this section to identify 

those grid points with the above qualifications), (2) refine 

the positions and heights of the maxima, and (3) sort the 

peaks in order of descending peak height. For E.D. maps, a 

fourth step is taken; that involving a calculation of 

interatomic distances and angles. The peaks in Patterson and 

superposition maps are refined using a least squares 

refinement of the variable parameters in a three-dimensional 

Gaussian, while those in E.D. maps are refined by averaging 

half-height positions in the three orthogonal directions. The 

half-height refinement technique is used for E.D. maps because 

in the early stages of a structure determination, E.D. map 

peaks are often very broad and not easily refined using only a 

limited number of points near each local maximum. 

The remainder of this section is organized in the 

following manner. The description for each step will consist 

of an introduction followed by a discussion of the theory for 
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the portion of the program described in that section and 

ending with a description of some of the pertinent programming 

details. Section 10.2 will discuss the identification of 

local maxima, which is common to all three types of maps. 

Section 10.3 and 10.4 will describe the two refining 

procedures; Gaussian and Half-height. Finally, Section 10.5 

will deal with the distance and angle calculations. 

10.2. Identification of Local Maxima 

Due to the crystalline nature of the materials we work 

with, the functions f(x,y,z) represented in our maps have 

continuous boundaries, i.e., f(0,0,0)=f(0,0,l)=f(1,1,1)=..., 

and repeat infinitely in all directions. This of course 

simplifies the situation in that we only have one unit cell's 

worth of information to consider. On the other hand this 

necessitates careful attention when programming a computer to 

handle peaks which lie on or near boundaries. Thus, efficient 

handling of peaks near boundaries is an important consider­

ation when developing an algorithm. 

The discrete positions which make up the maps we are 

using are "numbered" from (0,0,0) - the origin point - to 

(MAX(across)-l , MAX(down)-1 , MAX(section)-1 ) where the 

possible maximum values are limited to 16,32,64 or 128. These 

maps are stored in an unformatted file with one layer of 
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information per record. The program PIKR reads the maps layer 

by layer keeping three layers at a time for refinement of the 

maxima. 

Local maxima are located by employing a moving three-

dimensional (3x3x3) 27-point window which moves across the 

map, then down the map and finally through the sections. The 

central point, labelled #14, is the target point whose 

intensity must be greater than or equal to the intensities of 

the other 26 points. The boundary conditions are accounted 

for by starting with the central point at (I,J,K) = (0,0,0) 

and working through the map to the point (I,J,K) = ( 

MAX(across)-1 , MAX(down)-1 , MAX(section)-1 ). This 

necessitates identifying the point (I,J,K-1) as 

(I,J,MAX(section)-l), etc. in the first instance and (I,J,K+1) 

as (I,J,0), etc. in the second to account for the continuous 

boundaries. 

When the intensity of element #14 is greater than the 

intensities of all but one of the other elements and equal to 

that of the one other element, the following criterion is 

applied to determine whether or not element #14 is a maximum; 

(1) if the other element is numbered greater than 14, #14 is a 

local maximum, (2) if the other element is numbered less than 

14, #14 is not a local maximum. This avoids the situation 

where both are considered maxima. 

A list of local maxima is accumulated and each one is 

then refined in a manner determined by the type of map used. 
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10.3. Gaussian Refinement 

10.3.1. Introduction 

A least squares refinement involves the minimization of 

the difference between a calculated model and the observed 

phenomenon through variation of parameters of the model. In 

this case, Patterson and superposition peaks are fit to 

three-dimensional Gaussian functions. The program PIKR 

attempts to fit the points surrounding each local maximum to 

the Gaussian function {x^y^z) = P^(u,v,w) with variable 

position, height and isotropic shape. By saying a peak is 

isotropic we mean that the peak falls off in intensity 

identically in all directions. P^(x,y,z) is expressed as 

P^(u,v,w) = P^(u) because the reference system of the 

program is (across,down,section) which is not always 

coincident with (x,y,z). The variables u,v and w, therefore, 

represent the coordinates in the across, down and section 

directions, respectively. 

10.3.2. Theory 

The expression for the function P^(u), a Gaussian 

function centered at (Uq,Vq,Wq) with calculated peak maximum 
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height of k and shape parameter a, is as follows 

Equation 10.1. P*^(u) = k (u-Ug) 

^ ^ e-a[(Au)2d2+(Av)2e2+(Aw)2f2+2AuAv3'e 

+2 AuAwtit* ?+2 AvAwe * f ] 
9 

where e and ? are direction vectors in the across, down and 

section directions, respectively, dt*e=|3| |e|cos((j)), 3*?= 

|3||f|cos(e) and e^f=|e||f|cos(8). Mhen the map is oriented 

such that (u,v,w)=(x,y,z) then ?=a, e=S, ?=c, S=a, e=p and 

$=Y. The parameters Au = U-UQ, AV = V-VQ and Aw = W-WQ are 

the coordinates of the vector from the nominal (local) maximum 

(Uo,Vo,Wo) to a neighboring point (u,v,w). 

Using the first order Taylor Series approximation, the 

Patterson or superposition map intensity at a given point 

(x,y,z) next to or on a local maximum can be expressed as; 

o N SP^(u^) 
Equation 10.2. P (u.) = P (u^) + Z —0- Ap. . 

3=1 j J 

where P°(u) is the observed intensity at the point 

pC(#) is the value of P(u) predicted from the assumed form 

of the Gaussian function, N is the number of variable 

parameters, p^ are the variable parameters and Av^ are the 

minimizing shifts in the variable parameters. We are 

interested in the accurate positions and heights of the peaks 
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in these maps, so the least squares refinement is carried out 

by varying the parameters UQ,VQ,WQ,k and a. The parameter a 

is included as a variable because the shapes of the peaks do 

differ somewhat from one to another; especially with super­

position maps. Partial derivatives of P^(u) with respect to 

these variables are appropriately calculated. The Taylor 

Series can be expressed as; 

Equation 10.3. = P°(u^)-P^(u^) = ( AUq )+B^ ( AVq )( ÛWq ) 

+D^(Ak)+Ej^(Aa) , 

where C^, and are the partial derivatives for 

the variables u^, Vq, Wq, k and a., respectively. The 

corresponding matrix equation would be as follows; 

Equation 10.4. G U = F 

where 

Equation 10.5. G = (A B Ç D E) 

and 

r 1 
AUo 

U = 

AV( 

AWç 

Ak 

Aa 

Given the calculated values for all elements of G and F, U can 
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be calculated from: 

Equation 10.6. !2 = F 

The matrix U represents the desired minimizing shifts In the 

parameters Uq, Vq, Wq, k and a, such that: 

"o"®" + AUQ 

vo"®" Vo°" + ^^0 

"0™ + AWq 

= + Ak 

a"®" — aOld + Aa 

This procedure could be repeated Iteratlvely for each 

peak, updating the values for Uq, Vq, Wq, k and a until the 

shifts are smaller than a pre-determlned fraction of the 

actual values. Only one Iteration Is used In this program. 

10.3.3. Programming details 

For each local maximum, the 27 values of P^(u^) are 

calculated. The quantities (Au)^d^, (Au)^e^, etc. must be In 

units of while a Is In units of A~^. For simplicity In 

programming, (Au), (Av), etc. are In units of grid points. 

I.e., 0 or ±1, which means d,e, etc. are In units of A / grid 

point. As mentioned before, the magnitudes of d,e, etc. will 

depend on the orientation of the map and the unit cell 

dimensions. For example, (Au,Av,Aw) = (-1,0,-1) for 
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element (I-1,J,K-1). The initial value of k is equal to the 

intensity of element #14. An initial value for a is obtained 

as the average of 

Equation 10.8. a^^ = [-log(P°(u^)/k] / (U-Uq) ' (U-Uq) 

for all elements whose observed intensities are not zero. The 

partial derivatives are calculated and the appropriate matrix 

products are inverted. The matrix inversion routine used here 

is from Bevington. From Equation 10.7, the final positional 

parameters and peak heights are calculated and written to an 

output file for further external use. 

10.4. Half-height Refinement 

10.4.1. Introduction 

This peak refinement procedure is carried out by first 

starting at the local maxima and locating the positions of 

half maximum intensity above and below the maxima in the three 

map directions. From the half-height positions, apparent 

maximum coordinates in these directions can be calculated to 

whatever resolution is desired. Because the coordinate system 

in use is not always orthogonal this is often not the position 

of the true maximum. Appropriate linear combinations of the 

coordinates of this apparent maximum are made to determine the 

coordinates of the true maxima. 
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10.4.2. Theory 

Imagine starting at some point and searching 

in any one direction, say the ClOO] direction. The point of 

maximum intensity along this direction (Xq^^Yq^Zq) will be 

positioned such that the vector (x^-XgyOfO) (or, in fact, any 

vector parallel to it) is perpendicular to the vector from the 

true maximum point to (x2^,yQ,ZQ). If a search is 

made in each of the three unique directions C1003, [010] and 

[001], the following conditions should hold: 

(x^-xg,0,0) • ° 

Equation 10.9. (O.y^-y^.O) ' " 

<0,0,z^-z^) • ° 

These can be expressed in the vector form 

(x^-xo)a • C(x^-Xjj,)a+(yQ-yjj^)b+(Zo-Zjjj)c] = 0 

Equation 10.10. (y^-yglb ' [(XQ-x^)a+{y^-yjj^)b+(zQ-z^)c] = 0 

(Zl-ZQ): * [(=0-Xm)a^(yo-ym)b+(Zl-Zm)c] = ° 

/\ /\ A —> 
where a, b and c are unit vectors in the directions a, 

S and c. These equalities should hold for all values of 

(XQ,yQ,ZQ), and a simplification would be to assume 
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i-e.. 

A 

a • - Ymb - z^c3 = 0 

Equation 10.11. b * C -x^a + - z^c] = 0 , 

c ' [ -Xg^a - Y^h + (Zi-z^lG] = 0 

when further simplified, leads to the result: 

r X 1 r 1 COSY cosp 1"^ r X, 1 
I  I  I  I I I  

Equation 10.12. I I =1 cos-y 1 cosa | | y\ | 
I ® I I I I ^ I 
L Za Jrel L cos% 1 J L %! J 

A A A A A A 

where a*b=cosY^ a'c=cosP and b*c=cosa. The values 

of (Xi'Yi'Zi) will be given relative to the starting point 

^*0'^0'^0^ " (0,0,0), thus the refined maximum position is 

referred to as (x^'^m'^m^rel* aibsolute position for the 

refined maximum can be calculated knowing the 

local maximum position: 

Equation 10.13. (Xn'^m'^^m^abs = ^^m'^m'^^m^el + ^^O'^O'^^O^* 

10.4.3. Programming details 

The half-height positions are determined by starting at 

the local maximum position (XQ,yQ,ZQ) and searching in each of 

the axial directions for points with intensities less than or 

equal to half that of the local maximum. Careful attention is 

paid to the boundaries, as described above. The 
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displacement of the apparent maximum position (the halfway 

point between the half-height points) from the local maximum, 

defined as (Xj^,z^), is used in Equations 10.12 and 10.13 to 

calculate the true maximum point ^^m'^m'^m^abs* The 

calculations cooresponding to Equations 10.12 and 10.13 

carried out using coordinates in units of A. The true maximum 

positions are used, then, in the molecular search routine. 

10.5. Molecular Fragment Search 

The molecular fragment search routine was written to 

accept atomic positions either from electron density maps or 

from the procedure ALCAMPS (see Sections 4 and 5). The result 

is the accumulation of fragments of the structure mutually 

bonded within pre-determined distance and angle ranges. It is 

assumed that symmetry-related atomic positions have been 

appropriately transformed and averaged producing a list of 

"symmetry-unique" positions. This requires a knowledge of the 

space group symmetry which is almost always the case for E.D. 

maps and usually the case for ALCAMPS results. The first 

fragment is formed by searching for atoms bonded to the first 

atom (the target atom) in the list. This is accomplished by 

looping through the list and transforming each atomic position 

by the symmetry operations of the space group and calculating 

interatomic distances. When atoms are found, whose distances 

to the target atom are within the prescribed range, these 
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atoms are added to the first fragment. The transformed 

coordinates for each new atom are used in order to retain the 

connectivity. Once all of the atoms bonded to the first atom 

have been added to the first fragment, each of these, in turn, 

is assigned as the target atom, and further atoms bonded to 

these are found and added to the fragment. This process is 

continued until all atoms which are directly or indirectly 

bonded to atom #1, within the appropriate distance range, have 

been identified. At this point, all bond angles in this 

fragment within the user-specified angle range will be 

tabulated and printed out. All remaining fragments are formed 

in an analogous fashion using only atoms which have not 

already been assigned to another fragment. 

The coordinates for all atoms in each fragment are 

orthogonalized and projected onto the calculated best least 

squares plane through the fragment. Using the projected (in-

plane) coordinates, the program will plot out the atom 

identifiers (positions in the list) for all of the atoms in 

that fragment. This projection acts as a visual aid to assist 

in the identification of atoms. 
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11. APPENDIX D. THE INTERACTIVE COMMAND PROCEDURE 

CHES.CAT 

When Ames Laboratory purchased two VAX 11/780 computers 

in 1982, we began to develop a system which would make use of 

their significant interactive capabilities to assist in the 

determination of single-crystal structures. Our intention was 

to streamline and simplify the process of data reduction, 

initial model development and model refinement by leading 

users through the steps of the determination using interactive 

computer programs. 

The philosophy, here, was to provide interactive setup of 

the input files for the major programs used during a structure 

determination, along with the setup and appropriate labelling 

of data files which are also used by these programs. This is 

very useful for users who are not familiar with the steps 

required in a typical structure determination, of which there 

are many. In fact, this system expedites execution of the 

programs, even for those who are familiar with the procedure. 

The system described above is contained in the command 

procedure known as CHES.CAT. Execution of any one step in the 

procedure is initiated by first executing CHES.CAT using the 

command 0CXRADCHES.CAT. 

The outline below spells out the steps to be followed in 

a typical structure determination, and is included in part 
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to give the reader some appreciation for the extensive data 

manipulation involved in a crystal structure determination. 

Each of the steps in the determination can be performed using 

this system of programs and command procedures. 

I. CHES.CAT 

A. START - Data preparation - data from a four-circle 

diffractometer 

1. TRANS - Transfer of data from VAX 11/730 to VAX 

11/780. Used by all users of the A.L. or 

DATEX diffractometers. 

2. ABSN - Calculation of empirical absorption-weighted 

pathlengths and transmission factors. 

3. DATRD - Reduction of raw data including Lp, 

absorption and decay corrections. 

4. FDATA - Data averaging utilizing the space group 

symmetry. 

5. SETUP - Preparation of a data file containing 

chemical and crystal information. This must 

be done before going on to later steps. 

6. Space Group Det'n - This is a program which sorts 

the data by zone, thus assisting 

in space group determination. 

7. Read Syntex Tape - If the Syntex diffractometer was 

used, the raw data will be read 
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from a tape using this program. 

TORT - Initial model development 

1. Patterson - Contains N images of the structure, 

where N is the number of atoms in the 

unit cell. Can be used to directly 

identify some or all atomic positions. 

2. Superposition - Deconvolution of Patterson function 

Into one or few images. Useful 

when the Patterson is very 

complicated to work with. 

3. JSUP - Modification of superposition procedure which 

provides somewhat improved results. 

4. ALCAMPS - Complete structure determination from a 

Patterson or superposition map. 

5. MULTAN - Direct methods phase detemination. 

Structure solved completely in reclpocal 

space. 

HARE - Model refinement 

1. ALLS - Bread and butter refinement of positional and 

thermal parameters using least squares. 

2. FOUR - Calculation of electron density map using 

refined parameters from ALLS. 

3. PIKR - Calculation of electron density peak 

positions and heights, followed by 
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calculation of interatomic distances and 

angles. 

4. DISN- Calculation of interatomic distances and angles 

including standard deviations. 

5. OMEGA - Development of weighting scheme for least 

squares refinement based on consistency of 

individual structure factors with the overall 

model. 

D. FINISH - Analysis of final results and other 

miscellaneous calculations 

1. HATTER - Interactive setup of ORTEP input file. 

2. ORTEP - Execution of Oak Ridge Thermal Ellipsoid 

Plotting program. 

3. ACSTBL - Print out of structure factor tables for 

publication. 

4. DAPT - Calculation of distances, angles, least 

squares planes and tortional angles from the 

refined model or interactively created model. 

5. HYDROGEN - Calculation of methylenic, ethylenic or 

aromatic hydrogen positions from refined 

model. 

6. TABLES - Creation of publication-format tables 

including atomic coordinates and thermal 

parameters. 
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12. APPENDIX E. LOW TEMPERATURE APPARATUS FOR 

SINGLE-CRYSTAL DATA COLLECTION 

An important part of this research has involved the 

collection and analysis of high quality X-ray diffraction 

data. In many cases, it is desirable to collect data from 

crystals which have been cooled to a temperature as low as 

approximately -100°C. This might be in order to study a low 

temperature phase of the substance or merely to reduce the 

thermal motion of its constituent atoms. Cooling crystals on 

four-circle diffractometers is, however, more easily said than 

done. There are a number of factors which have a bearing on 

the success of the experiment and must be considered. 

Figure 12.1 is a schematic diagram of a four-circle 

diffractometer such as the ones we use, when equipped with a 

low temperature apparatus. The typical design for crystal 

cooling involves sending cold nitrogen gas onto the crystal 

from above after passing it through a Dewared delivery system. 

The first problem one needs to address deals with the 

delivery of the cold gas. Liquid nitrogen (LNg) is the most 

commonly used source of cooling gas, for experiments which 

call for moderate cooling. A commercially available delivery 

system was in place on the Syntex diffractometer at the start 

of this project. The cold nitrogen gas was supplied by 

passing warm gas at a high flow rate over liquid nitrogen in 

order to cool it before it was passed over the crystal. After 
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w AXIS 

4-CIRCLE — 
GONIOMETER 

NOZZLE 
WITH 
HEATER 

/ AXIS 

Figure 12.1. Schematic diagram of a four-circle diffracto-

meter equipped with a low temperature apparatus. 
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repeated use of this system we discovered that it had a number 

of drawbacks. When the system was not in use, moisture 

condensed in the delivery tube, thus plugging the line. When 

the system was started up, then, a considerable amount of 

moisture gushed out before the line was thoroughly purged. 

This resulted in the exposure of the sample crystal to a 

series of drastic temperature changes which can be 

disasterous. 

Another problem one must deal with is temperature 

control. We found this to be relatively difficult with the 

original system, due to very high pressures and flow rates. 

Probably the most troublesome problem is that of 

frosting. Because X-rays are scattered (or attenuated) by 

most materials, most low temperature apparatus work without 

the crystal being enclosed, (although it will normally be 

mounted in a glass capillary) which means it is exposed to 

atmospheric moisture. The cold gas tends to leave moisture on 

the capillary which eventually freezes. Without careful 

attention, the frost can build up to an extent that the X-ray 

beam becomes significantly attenuated, in which case the 

results of the analysis will be seriously compromised. The 

previously mentioned commercial apparatus was designed to get 

around this problem by delivering a very strong stream of 

nitrogen gas. This was partially successful. However, the 

eddy currents around the capillary enclosing the crystal are 

usually such that some moisture still builds up around it. 
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We have modified the original system and significantly 

simplified and improved the delivery of cold gas to the 

crystal. Using the delivery tubes as they were, we first 

designed a cylindrically shaped piece of copper foil to 

"collimate" the gas stream as it passes the crystal; the 

copper foil had slots cut out of it to allow passage of the 

X-ray beam. This has been found to reduce the eddy current 

and thus the build up of moisture on and about the crystal. 

We have modified the delivery system as well. The gas is 

delivered directly to the crystal from an LNg Dewar by boiling 

the LN2 at a rate appropriate to maintain the desired temper­

ature. The system will continuously cool a crystal down to 

about -100°C for up to one week. If the data collection is 

expected to take longer than that, the system can be allowed 

to warm up slowly, by turning off the current to the boiling 

resistor, while the Dewar is being changed and then slowly 

cooled back down. 

Temperature control is not, at the present time, 

extremely precise. A thermocouple is, however, mounted in the 

delivery nozzle near the crystal and the temperature can be 

monitored and adjusted at will. This adjustment could be done 

by a computer if the appropriate connections were made. 

The system described here has replaced the original 

system which was on the Syntex diffTactometer, and a similar 

system has been designed, built and mounted on the A.L. 

diff ractometer. 
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